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Research progress of solute transport in the microenvironment of

articular cartilage
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[Abstract]Articular cartilage is the most common hyaline cartilage which has been studied the most. The solute transport of chondro—
cytes includes diffusion and convection. In the extracellular matrix, diffusion and convection of bioactive molecule plays an important
role in physiologic adjustment and cytobiological response. For the last few decades,the interaction of subchondral bone and articular
cartilage has been investigated, which is considered as an important aspect in the etiology of osteoarthritis. In this paper,we have re—
viewed studies of solute transport in articular cartilage and the interface of cartilage and subchondral bone,aiming to provide refer—
ences to environmental pathophysiological function of articular cartilage and provide new thoughts for treating clinical ostearthritis.
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