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[ Abstract]Objective : To study the regulatory effect of SIRT3/MnSOD/ROS signaling pathway on osteogenic differentiation of adipose
derived stem cells(ADSC). Methods :In this study,we first cultured ADSC isolated from rat inguinal fat pads,and ADSC were identi—
fied by surface markers (CD29,CD44,CD34,CD45) and they could be induced to osteogenic and adipogenic differentiation. During
osteogenic differentiation induction in wvitro , expressions of SIRT3 were studied by western blotting. We used Lenti—SIRT3shRNA
transfection to knockdown SIRT3 within ADSC, osteogenic capacities were identified by ARS staining, osteogenic differentiation—relat—
ed genes Runx2,ALP,0OCN mRNA expressions were assessed by qPCR,and the activity of MnSOD and reactive oxygen species
(ROS) levels within ADSC were tested using kits. Results;The expression of SIRT3 mRNA(7 d:1.71 £0.03,15.21 £0.17,P=0.014,
n=5;14 d:1.44 = 0.04,9.70 = 0.18, P=0.002,,n=5 )and protein(7 d:0.70 + 0.01,2.99 = 0.07, P=0.012,n=5; 14 d:1.00 + 0.08 ,2.74 =
0.50,P=0.009,n=5)increased during osteogenic differentiation
of ADSC. Lenti—-SIRT3 shRNA transfection could inhibit SIRT3
mRNA expression(7 d;1.02 £0.05,0.36 £ 0.01,P=0.011,n=5;

{EE N 4B : B iZAL, Email :276857417@qq.com,
BT 1 7 REts e B R R IR AT
BI51E& : &7 BL, Email ; guangyueli@hospital.cqmu.edu.cn,,
ESTH:BRAAMSALFEAYTABD (%5 .81800938), 14 d.1.04 £0.08,0.30 £ 0.02,P=0.002,n=5) and protein
4 5 H4 BR - https://kns.cnki.net/kems/detail/50.1046.R.20210513.1649.024.html expression (7 d:0.88 £ 0.04,0.29 + 001,P=0034,n=5;14 d:1.18 =
(2021-05-15) 0.03,0.43 +0.01,P=0.014,n=5) ,with decreased MnSOD activ—
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ities (0.91 £0.13,0.29 £0.01,P=0.002,1n=5) and increased ROS levels(7 d:1.00 +0.10,2.66 + 0.32,P=0.013,r=5;14 d.1.24 £ 0.10,
2.59+£0.31,P=0.014,n=5). The expression of corresponding target genes Runx2,ALP and OCN related to osteogenesis decreased
(Runx2:1.07 £0.02,0.19 £0.01,P=0.001,n=5;ALP:1.09 £ 0.02,0.53 +0.01,P=0.001,n=5;0CN:0.95 +0.02,0.33 +0.01,P=0.004,
n=5). Inhibition of osteogenic differentiation ,induced by knockdown of SIRT3,could be reversed by pretreatment of NAC (ROS;

2.63 +0.20,1.07 £ 0.19,P=0.010,n=5). Conclusion ; SIRT3 within mitochondria plays vital roles in promoting osteogenic differ—

entiation of ADSC, by mediating enhancement of MnSOD activities and reduction of intracellular ROS levels.
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