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Action mechanism of nasal mucosal immune adjuvant on improving the

immune effect of vaccine and its progress
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[Abstract]A large number of studies have shown that vaccines immunized by nasal mucosa can induce the production of
immunoglobulin A (IgA ) ,which is expected to be one of the effective ways of vaccine. However,immunization with the vaccine
nasal mucosa alone does not induce strong IgA production in the nasal cavity. It is necessary to add an adjuvant to activate the
innate immune response and enhance antigen—specific IgA production and cellular response. At present, there are many kinds of
nasal mucosal immune adjuvants,but its specific action mechanism of promoting immune responses remains unclear. This article
discusses the pathway of nasal mucosal immune adjuvant in promoting immune response in nasal—associated lymphoid tissue (NALT) ,
and provides a reference for further research on nasal mucosal immune adjuvant.
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