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Role of histidine triad nucleotide binding protein 1 in embryo implantation

Wang Qian ,Liv Taihang,Chen Xuemet ,Zhang Shuang,Zhang Xue ,Ye Liang,Ding Yubin

(Laboratory of the Reproductive Biology,Joint International Research Laboratory of Reproduction & Development
School of Public Health and Management ,Chongqing Medical University)
[ Abstract]Objective : To investigate the expression of histidine triad nucleotide binding protein 1(Hintl) gene in the endometrium
during early pregnancy in mice and its role in decidualization of endometrial stromal cells. Methods ; Immunohistochemistry, in situ
hybridization , Western blot,and RT-qPCR were used to measure the expression of Hintl in the uterus in mouse models of early preg—
nancy, pseudopregnancy , and artificially—induced decidualization,and siRNA was used to knockdown the expression of Hintl in pri—
mary endometrial stromal cells. LC-MS was used to analyze the effect of Hintl on lipidomic profile in stromal cells during decidualiza—
tion. Results: The expression of Hintl gradually increased from day 1 to day 8 of pregnancy,and the expression at implantation sites
was significantly higher than that at non—implantation sites. The mice with artificially induced decidualization had significantly higher
expression of Hintl in the endometrium than the control mice without decidualization. The siRNA interference with Hintl expression
significantly affected decidualization and lipid metabolism in endometrial stromal cells. Conclusion ; There is an increase in the
expression of Hintl in endometrial stromal cells during decidualization, which may be associated with lipid metabolism in endometrial
stromal cells during decidualization.
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1.1 ZE&shh

SR Eh YR SRR A LB = S A R TS R L AR
S FH 1 B EL /N Rk 8 RIS (25~30 ), ¥ H
PREER} R AR SL 5 2 e GIE B4 . SCXK [X] 2018-0003)
BT ERKERRFL S b sh ) i 3s, 45 T H A
TRE AR B AL A% R TR RO

H4 I /DN B SR R ) ] o R A S LS I
PERS L LIARAS AT R R 2/ N B, 28 3 BT 19 XY R Sl AT 0
551 K (D) fBZR5S 1 R (PD) o A 1R (D)) Dy, i id e
Pk A O o R AR ORI R SRR Ds TR AOAEA
TR I o F K BT 19% 6 B 5 SRl (Sigma—Aldrich ) B 2 & TR
{7, 75 D(PD,) . Ds(PDs) .Dg(PDg) Fl Dg(PDy) (n=3~5/2H ) 4ib
BE/NER,

N TS A AL /N AR . 7E PD,(n=3~5/41) /MR F
B —MEEA 10 L 22570 (Sigma—Aldrich ) , %l 1] 75
FATEST 4R PBS HIEXT IR, 7 PD8 Wkt &, MIEZS AN
JEALFRICH diprp (WFRA pr18a2) i mRNA ik /K FEEAk
AL RE

A B0 F 5 RSAE DK D IS AR | 4.0% 2 5 FR i ]
T, BRI ARG T-80 CF A7 ARt — A5 523
1.2 D RFE AR i (mESC) 4 B 35

4 PD4 /N T B 53 TF, DI/ (2~3 mm) , IFFH
HBSS (Boster) Vi J5 , A& H 6 mg/mL, dispase Il (Roche
Applied Science) F1 19% (w/v) B8 [ (Sigma—Aldrich) (1) HBSS
WP TE 4 CEAF R INAL 2 h, RIS 7E 37 C R N4L 30 min,
BFEAR 5 0.5 mg/mL 12 J5# (Sigma—Aldrich ) (76 HBSS Hi i
FE)TE 37 CHEF 30 min, & 10 min BIZUE S H 2
TR, BB I TS (biological industries )24 1B ALV J5 |
LIEWGE I 70 wm SRR U AR LA R L A A B, B3
T B ANIRITE Y HBSS Yk 2 YO BTl it

IR B 20% 5T LT (100 UL 7555 3% (Be-
yotime) . 100 wg/mL 555 2 (Beyotime ) Fl 2.5 wg/mL MPEREE
B(Sigma—Aldrich) ) DMEM/F-12 i%?%%(Sigma—Aldrich) |
JHLLL 1106 A 40/ SR AL, 2 x 105 4L T 24 £L1%
Febr, TEEH 5.0%CO0, (1 37 CHFF P RIIEREFE | h 7540
UL R 5 TR, 47432 ) S5 o A A e o A R SR A g —
RS, A e S 5 A T 4 AR RE ) Vimentin,
Y O AN IS (=95.0% ) I EL BT 40
13 sk

A 1 7 D L PR B T I F G e S MR 1) /N B Hine (s
Hint1) SEE /N T4 RNA, AIREAE E 8 A K544 T (37 °C
5%CO,) FEIRF] 70%~90% PEFTH YL 20 BRI LT .
4 5 L Lipofectamine 3000(Invitrogen )% 475 50 nmol/L
siRNA BUFEA (si-Hint] 175 24 siRNA) A Z 5504 T TR
VIERE G, R EF IR & 0 B A 5 32 2 v 46 0E
WA RGN 24 h, SIS Hintl 3235, WORZE A L
TSRS,
1.4 ARSNE S BRI

$ mECS 7554 E2(10 nmol/L) , P4(1 pumol/L) 584 1%
FREL (A 20% W TS 100 U/mL 7555 % 100 wg/mL 4%
FEFEM 2.5 pg/ml PITEEEZE B AU DMEM/F-12 Bigfdk ) o
72 h, it RT-qPCR Rl /N B 5 2 o 41 A i e B fE A i
Yy dtprp DASGIIFF AL i) 5 75
1.5 SEMmiLE

B gBE 21 2Lk 2 e 43 IR B 6B 43 (Zhongshan Bio-
sciences ) A THRNE O T8 WIRZH 200 D) A 8 — W 2R P it
U A0 EETEORG TR K, SR F5 PR AS R 22 R S e T
PABE T, 3%0 H0, B5E 10 min RL0H] P IR
AALYIRG, 10%I1EH MG AE 37 CHFE 30 min, S5 1E
4 C'F 5 Hint]l —¥t (Proteintech Group) LA 1 : 100 i Bk i
FRE IR 5 2 K OB AE PBS vk, IE SR R RRCH
4 (Zhongshan Biosciences)1E 37 C N E 30 min, K55
PRI E ALY (Zhongshan Biosciences )£ 37 CHFE 30 min,
JH DAB X7 2 (Zhongshan Biosciences ) #4784 2 7 , I 5.
IRNFEEYAE . A RK PR RN B IR AR S e,
PERIRE (Solarbio) 35 .
1.6 Western blot

P FE A LU T3 B N 7 09 24 2% thil RIPA
1 PMSF (Beyotime ) H1, 2 3¢ 2 HIF 85 J B30 LS LB R
T, BB SR A L 2105 S48 M /AL BT A AE B 5%
e ] BCA 38574 (Beyotime ) Il 725 4H 21 146 141 R
R FicHE H BYEE o F e o B LA S e A e, 60 Vi
JETRHLPK 10 min J5 #EAT R 1 1R, 80 V IHHHLIK 90 min;
250 mA ¥4 % PVDF i (Millipore ) ; %I NE W k3 3 F] PVDF
JEE 80 min Ji , TN 5% HEW IR R —PT Hint1(1 = 1 000)
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BMP2(1 : 1 000) HoxalO(1 : 1 000) #a i 5E/ B-actin(1 :
1 000),4 CHRARIER; Y H PBST §E%% 3 ¥, 15 min/Ik; & F
5% IR WA R BE) BT R Z EIFE 80 min )7, PBST 151t 3
YK, 15 min/¥; ECL 22 5844 . Quantity One BFHEAT K BEA3HT
ACTB(B-actin) FHEPIFRXTHE
1.7 JRAZE R

Hint1 %EHH 5% AP HE ARG RA R A R, 15
YA (10 wm) & TR [, IFTE 4% 2 T W RER IR
(H1 PBS Fi ) P El5E 1 h,1%Triton(Fi PBS 7 #) (Beyotime )
R 20 min, FZsCFEE I FHEAT 15 min, 7 58 CF 4258
16 h, YEUEH ] F 00 5 b & 9 (1:5 000, Roche ) — 2R &
J5 |, B BRI 5350 & (Beyotime ) b £, 504 2 32 1)
{55 MGt B LSk (Beyotime) YL 5 3
1.8 qRT-PCR

28 RNAiso Plus(TaKaRa)RNA $2BGRAF &0 542 H
JLRNA FHIERTE . 2% PrimeScript™ RT Master Mix (Ui
SR BB RNA 5L <DNA , HF RT—qPCR 195 |15
G0 1, 13 SYBR Premix Ex TaqTM 7| £ (TaKaRa)7E
BIO-RAD iQ5 #&)6S2mfE & PCR AL F#E4T PCR i, 44H
SR FATEE 3R, Bactin MERNS R 27246 T IE R
ik at,
1.9 9% 38 kA

RiFR M AR 4.0% 2 B [ 72 25 min J5 , H 5%
BSA #4] 60 min, # Vimentin —4i (Cell Signaling Technol—
ogy) T 4 CIRB ., K H PBS P 3 KI5, 986 4 (Be-
yotime ) G 254 F 37 CHEE 1 h, DAPI(Beyotime ) &%
10 min, Olympus BX43 & E %,
110 BeJAL M7

e i si—Hintl F4L 3148 F2 H1 P4 35S 140 5 10 20
Jif, BT KR 37 CH (IR S min) B VRAR 2 K, PR

A-80 CUKFEIRAF A . HMLA T 20 pL 7K/ HT (43157,
vIv) T 30 s, FERS BIEAT . INIBR (T CHCL;80 wl),
TRHEIRA] 30 s, FIRERE 5 min, FEAFIRJE, 4 000 r/min 4 °C
B30 30 min, SEBCA B (B T2 Il KU h 28k 2 T
M REATAE=20 °C, K28 A BRI TR EE(L < 1, vivs
20 pL), IWEEIRA] 30 s, MMA propan—2-ol/water/acetonitrile A
Y2/ KIZ I (50 = 25 = 25, v/v; 200 wl) , TAEIR ) 30 s, 2k
J5&i 4 000 r/min 4 °CES.L> 20 min, WH B3 150 pL fin A2
UPLC {58/,
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KBk #E @=0.05,,

2.1 Hintl £/ R FHE4RF 5 W B P o9 FOA ML
HEA AL 25 3 (B 1A) BoR Hintl B E7EEIRES 1 R
(D) F Dy A B2 B T B FOR 43 B B A i v 2R3k . E Ds
JRNG B % 75 B , Hint] 7EAE AR (1S) J& Bl 4 2 it
X (PDZ) )12 F6ik . 1 Dy £ Dy, ZEFE ATRAL(IS) J& FRl 1)
UGG IX (SDZ ) P A S0 RS 200 At Hh 82 3] Hint 1 FR) 58 P
PEYL{AL . FE D5l Do MARAE A SAL (TIS) [ Hintl (6o e e
T AE D, 1 D, PSRRI Y, TR 243e 255 (J&1B)
SR, A Dy D, AR B B R A0M AT 5% Hintl mRNASH
5o TE Dy BRI GBI F Dg A1 Dy b AY UGS X e G )

%*&1 qRT-PCR®I5I#

FEH R F9:5" —3° HEE(C)

Hint1 NM_008248 N4 GCGACACGATCTTCGGCAA 62.0
2 SR GGTGCTTGAGGGGAAATGTCA

diprp NM_010088 NEYE:: AGCCAGAAATCACTGCCACT 59.0
Sz Sk TGATCCATGCACCCATAAAA

cox2 NM_011198 1E ik GCGGACTAATCTTCAACTCCTACA 60.0
S i CAGATTTCAGAGCATTGACCGTA

fas NM_001146708 1F S 4 CATCTGGACCCTCCTACCTCTG 60.0
S Lk AGGACAGGGCTTATGGCAGA

pemt NM_008819 s GCCTGCTACTCTCTAAGCGTCA 60.0
S g GAACACGGTCACTCTCGCCT

pld NM_001164056.1 1E SR TTCTTCAAGGAGGTGTGGGTTT 60.0
2 ik TGGTCCCAACAGAAGGCAGTA

sptle2 NM_011479 1E SR TTGTTTATGGTCAGCCTCGGA 60.0
S CATAACATCCACATCCTCGGG
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YER FEARAE RN SR
2.3 Hintl £/ RATFFHAH T & M B FR A
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3B) /N BB EARIC K K diprp 9 mRNA 7K (& 3C)3IE
AR ) BT HEST

R

Hint1 | | e e v — . — I

B—aclin| — e — — — J

Hint] mRNA HIR} kG

N O Q}% Q}\% 9§)Q§) o

C. qRT-PCR

S ng}% Q}{o Q}% Q}{o Qv

D. Western blot

N b- %
» PP FE o

E. Western blot JK 434
le: & 117 sge s B 1 55 FETRANM s de  WEREANA ; %  IRAR ; PDZ W RIERR X ; SDZ : IRGLISERE X 5 1S - 35 I 5 TIS : IR 57
a:2 AEHRIRA G222 5

1 /NREZHER Hint! RikE



— 986 — BRERKFFIR 2019 £5 44 £55 8 # ( Journal of Chongging Medical University 2019.Vol.44 No.8 )

A. g 4 UE

1.54
g 1.0+
|
Ml | ———— <
Eé,_ﬁ? 0.5+
E
Bractin | M A — — — =
0.0
PD, PD, PDs PD, PDy
D, D, Ds Dy D
B.Western blot C. Western blot JKFE3#r

BT AR NG B RRE R AL KO TE 25 P22 52 s AR AT R [l /NS 5 BE RO 2R G IR Kt A7 35 ke 5
2 NREREIRBEA Hint! ik

100 a 3 000-

e 2 000-

ﬂ“ﬁ“ 1 000

~ 0.60- / 1
& #®
=

= 040 2 =

& 0.05T - 7
r £
o E

;E 1+
sl

D e 0.00- 0-

e D e D

1D : K75 P BLALA 5 IDC X AR AN
A NRTEIITES 30T B. /N TR E A A C. qRT-PCR
a:2 AEARIA GE 22 5+
3 BUINERSLIR A St AL

RE AL (] 4A) AT 2432 (K] 4B) 455 W7 Hintl 76 mRNA F5 X RALY 2.25 £5 (18] 4C) . Western blot HLIiFSZ
75 S WIEAL T B KA mRNA 7K 52 5 X6 R TE B P Hindd 2385 XL, 278 Hindl 7E8L
2, qRT-PCR #5 R %M, A S BT 59 Hintl §) IR,



BERERKZEFIR 2019 £5 44 55 8 H1 ( Journal of Chongqing Medical University 2019.Vol.44 No.8 )

— 987 —

DG
A. fys 8k
P D DG
B. 2458
515 € a 1.0 a
#® i 08
= w06
<
z 4 T 04
£ —
z Inc I = 02
£ oL 00
IDC 1D IDC 1D

D. Western blot E. Western blot

IKBE 53K

C. qRT-PCR
1D : TR 5 BB ; IDC - X )
a:2 AHARE A G EER

4 Hint1 ZEATIHESEEL/NRFERNBENRE

e
— -

A 6% E B. gz ue sk
i a
B L5 ﬂg 1000
i . &
= 1.0 ’T £ 900
- £
-
% z
Z 05 =
i =
Z 00 )
con  E2+P4
E. qRT-PCR

F. qRT-PCR
a
ACTB

Hint1

HoxalO

! I
%%Lj:

si-Hint1 si-Hint1 - -

E2+P4 F2+P4 - -

+
+ 1
+ +

1. Western blot

a:2 R A G722 5

157 &
i)
— ‘DI .

ksl

=05
—_— z
BMP2 =

| W-— - = 0.0

_ +

J. Western blot F8 3K JE 50 Hr

2.4 Hintl % ik BAKE T/ SO fa itk sh i - 5L IR AL 09
EAC

T PR Hintl 7875 PA B 5 200 i 38 A Ak b
PP, 20 B8 1 /N BB P9 L T 40 i (mESCs ) IR A 55
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Western blot #1l i5t FELAL AR i 4 : BMP2 1 Hoxa 10, DL 45IE
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2.5 Hintl A5 0o fis AR H

T RESE Hint] 76 /)N B 5 PABEEJEE J5 240 L Al Joi 438 v
FIVE R AT HEAT T VRO 6335 — BT 056 1 (LC-MS ) Rl
FEAL TS LA K Hint] 4985 A B AR A8 4k 38 5 Bodi
(http://monlinear.com/) i 1% A STk A [ , 75 2] 11 Fp5Z Hintl
4R 5 0 B A SC TR (18] 6) ; Isoleucyl —Methionine 2 —(4—
Methyl -5 —thiazolyl ) ethyl | Gestrinone .20 —Hydroxy —leukotriene
E4 Sisomycin ,Sphingomyelin (SM) . Phosphatidyl cholines/Phos—
phatidyl ethanolamine (PC/PE) Galactosylceramide (d18:1/16;
0) .Diacylglycerol (DG) . Galactosylceramide (d18:1/24:1) .5 -
Hexyltetrahydro—2—furanoctan, 45581, 5% SHUEALLH A
H, T4 Hintl 3355 , Isoleucyl-Methionine . Sisomycin ,.SM |

PC/PE . Galactosylceramide (d18:1/16:0) & & F i, 3 H 2-
(4-Methyl-5—thiazolyl)ethyl ,Gestrinone ,20-Hydroxy-leukotriene
E4 DG, Galactosylceramide (d18:1/24:1) .5 —Hexyltetrahydro —
2—furanoctanoic acid F it [H, X —£55HEKH, Hintl 54100
e BT VAR

]I {7 F IMPaLA J3 874K 45 1 AR G550 i (R
2)  ARIEITEER A 171 DARRAF S8 B2 B 52, K
PRI IR, A o S mb S5 R 5 o 1 AR5 32 3520 < phos—
phatidylserine(PS) .PE PC phosphatidic acid(PA) high density
lipoprotein (HDL) ,arachidonic acid (AA) .anandamide (AEA)
5. ARWFFGEFIH RT-qPCR R T JLRH -5 IR A A s
AU S (7 3238 - 45 S R (& 7)si-Hintl 417 cox2 . fas |

sptle2 .pld F1 pemt 1] mRNA B i,

F2 IMPalA ZSBESH

i B4 PR e RESE =AY (AZiE7/S8 3¢ PIE QfE
Sphingolipid metabolism Wikipathways 4 HMDB10708#HMDB10712; 51(67) 1.09E-06 0.0025
HMDB13464; HMDB0898S ;
HMDB07965
Synthesis of PS Reactome 2 HMDB08988 ; HMDB07965 5(6) 3.84E-05 0.0187
Acyl chain remodelling of PE Reactome 2 HMDB08988 ; HMDB07965 5(13) 3.84E-05 0.0187
Synthesis of PC Reactome 2 HMDB08988 ; HMDB07965 22(28) 0.000874 0.192
Glycosphingolipid metabolism Reactome 2 HMDB10708#HMDB10712; 31(41) 0.00174 0.334
HMDB13464
Metabolism of lipids Reactome 4 HMDB10708#HMDB10712; 334(620) 0.002 0.367
HMDB13464; HMDB0898S ;
HMDB07965
Phospholipid metabolism Reactome 2 HMDB08988 ; HMDB07965 50(103) 0.00452 0.544
Glycerophospholipid metabolism EHMN 2 HMDBO08988 ; HMDB07965 61(96) 0.00669 0.722
Arachidonic acid metabolism — KEGG 2 HMDB12639; HMDB07965 65(75) 0.00757 0.797
Homo sapiens ( human )
Phosphatidylcholine catabolism Wikipathways 1 HMDBI13464 4(7) 0.00875 0.819
metabolism of anandamide an 5(6) 0.0109 0.959
endogenous cannabinoid BioGarta ! HMDBOS9SS
phosphatidylcholine biosynthesis BioCarta 1 HMDBO07965 7(8) 0.0153 :
pathway
Acetylcholine Synthesis Wikipathways 1 HMDB07965 9(9) 0.0196 1
HDL remodeling Reactome 1 HMDB07965 10(17) 0.0218 1
Synthesis of PG Reactome 1 HMDB07965 10(13) 0.0218 1
Synthesis of PA Reactome 1 HMDB07965 15(26) 0.0325 1
PI Metaholism Wikipathways 1 HMDBO07965 17(29) 0.0368 1
Alpha Linolenic Acid and
Linoleie Acid Metahalicm SMPDB 1 HMDB07965 17(18) 0.0368 1
Synthesis of PE Reactome 1 HMDB08988 19(21) 0.041 1
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