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Strategies of molecular genetic testing for neurogenetic diseases
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(Department of Neurology,The Second Affiliated Hospital , Zhejiang University School of Medicine )
[ Abstract ]Nowadays various types of genetic tests including single gene testing, Panel testing, whole—exome sequencing and whole—

genome sequencing, have been widely used in the diagnosis of neurogenetic diseases. With the advances in genetic testing, physicians

are able to reach a rapid and precise diagnosis of diseases with vast genetic heterogeneity and complex phenotypes. This overview of

genetic testing strategies aims to help physicians to select the test that is most appropriate for their practice setting.
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HILPEIT: (single gene testing) AT 2L B0 Ko B 85
A — R (sanger sequence) \ 2 HEEARE ™ HIHA (mul-
tiplex ligation—dependent probe amplification, MLPA) . FE& 514
PCR (repeat—primed polymerase chain reaction, RP-PCR) K J
B PCR $ K (long—range PCR) & Southern blot %, —{ Uil /3
A A ) B A B DR g 61 ) A b AR T A S (mis—
sense) | [i] X Z€4% (synonymous ) , J& X %% (nonsense ) . /N Bt
(14 AR 8745 (small insertions/deletions ) F1 55 4417 17 245
(splicing) ®'; MLPA I F O A6z 0 3 DA L 1% 4% D1 %542 5% (copy



BERERKZEZER 2021 £55 46 B 7 H8 ( Journal of Chongging Medical University 2021.Vol.46 No.7 )

— 799 —

number variation, CNV) ; RP=PCR 7] A&l DNA | /Y 8 &2 17
B R AEARRE MY 4 | BN 8h 452878 (dynamic mutation) , 24 &
HHA LT RHERS 15 PR B2 A AT A28 SR R ), O Aff 1
N 5 QI PRFE YR ILAAG 36 A6y e 45 R ARG 1) o — Ty
FEBURIPN ; P HHTA 1 B0 FE R BN K
BRI AR L OB E R TR

— RN PP 3 T R 2B Ry, 0T R 3 B bR i B
(<1 kb) R mGEAE | BN A 2 dok 2 14 I R 3 RS I 174
CEBRUETS AN T EORAZ AR (Wilson disease, WD) | E J&—
ol e AR 8% (R A AT A TP7B 2 HiME— I B0
BN 2 5 E AR 78% 1 835 T AFALE p.R778L p.P992L
H1 p.T935M = AR, Rt , X R |- v) B 4 JF R A AR Pk
HE VS HEAGI A TP7B JE HR 2 g — Rl ek |
TR EL AR TR A B UG I 7 210, SN R AR 32 3l ik
iéﬁ]l%ﬁ%(paroxysmal kinesigenic dyskinesia, PKD), BRI R
REIE R )L BB A2 1) Hh W A2 307 R 10 3 4 B ) sl )
A H Fizdl, AR NUK Sy BRRT BREE RSl A e T R AR EhAESE
AR I 1/3 (¥ PKD FEAE 5T e (i B MR A 5L
JRHEED PRRT2 FHISAZ , Hor ¢.649dupC (p.Arg217Profs*8)
SR MRS 58 BT 4 LU 38 76.47% , PRI IHC T 15 422 %5 i PR
B EREE R PKD SB35 3EAT PRRT2 SRR —ARI0)% . 1H4h,
— R ik 22 T E BRI B0 272 19 SEUE & Z5 01 i 3
SIESYAIE o (H R — I P 45 R M R REHERR B AR X AR E
AR TR BAfiA P8 DVEUE 5 A% IR A G Bl
i DX PP 51 AR S5 AN B, S5 4k, 0 TN T8 H AL 1Y
FEDR A 2 00 e 2 2%

MLPA AR 22 T 0 5 LLPS DUBUE S5k 32 9900
AN EE WLZE 46 9E (Charcot—Marie—Tooth , CMT) , ‘& &= e H UL
B AL R R 280 2 — , AR 200 1/2 500, CMT f4:
BRADRIFAFAS ZAE 10~20 2 I RARFAE = B2 4 JR AT o C
T JESEWGR AL TR, TR E A CMT AH G B
K £ 3k 100 A, Horb e U B 28728 2 Y (K 17p11.2
X E 1.5 Mb JEEI I B &2, 1 DX el 25 R o] L
HHE PMP22 D 38 SCHRARGE PMP22 JEN 878 (5 CMT1
TR 70% , FEFA CMT i (1 5 Fe ik 5090, BEARTHAEM
i ] MLPA HA Rl 25— AR Xt 465 A~ [E CMT ZX &
IFe, A B PMP22 LRI S0 29.5% , 1 PMP22 JE[R 5 587
AT 2.2%  HERT UL, 6F IR T Al B0 CMT B8] LUESE
BEPE MLPA BARXT PMP22 FE R HEATAIN | 45 B i 4/ i T
ZHIM P, AT R S GV A G ) A 50 56 RIS ) (H PR
KA P BB S T2 PMP22 FER B8 DL RS 5 i
Ah X R B AL AR R ALE FEAS R (Duchenne muscular
dystrophy, DMD) 76 JL 3 F3H &9 , RN LI 77/
FRAE IR Y T . BRSO LRy DMD o iy
A E YR Bl e S EBUIR BT 5 65%~70% , 22 K HAE

GEAL I X 45~53 A0 70 PR Rt O S e
MLPA, S G AR ERAL B BE1E ILZE 46 (spinal mus—
cular atrophy , SMA) I ECHR LR SMNT, H: T2 969% 1 5845 1)
T SANEF I EE A B O 0 DL R AR R (hereditary
spastic paraplegia, HSP)#5c ' UL BOREE SPG4, H: I 20%~
25% M RASTE A NP5 DUEUE S B UG48 DUECR 530 F 9
SOPTHEATIN , I R 1 Z2 05607 HA RS BRI MLPA,

RP-PCR & Ji' B PCR \Southern blot K 3K Il 75 A
(long-read sequencing, LRS)#S T F F Rl 21T IR T 2 41
AT H 1991 4F E IR AR FMR-1 5 5 JEFFEIX (untran—
slated region, UTR) i CGC T E P 14 0] REME M X 28 &1F
(fragile X syndrome,FXS) LK | ki kW 2 Fgehis 5 2% 17
PRS2 SR, AL IR S 1 S8 W] R A e i X
L, U BB AEREPE 546 (spinal and bulbar muscular atrophy ,
SBMA)H1 AR B[ 1 55N T B CAG Y i, = 4E
1% (Huntington disease, HD) F HTT 3£ 4815 X 1Y CAG &
S HTEOR AT LU A UTR X ek N & 71, s 5
W& F2A K (myotonic dystrophy, DM)43> DM1 B4 DM2Y |
HURFEAE 53R DMPK JEH 3°UTR [Xf¥) CTG F A HICNBP
LB 15N E&F CCTG AW,

UEAER Z AT TR 1 C o E N AMIFTE A, 2018
AR ISR B o LI ZE 9 (familial cortical myoclonic
tremor with epilepsy, FCMTE)1 4 fy SAMDI12 5:[H P &+ X
B TOAZ R EL A (TTTCA) I 4 BUig ™2, J5 28 2 F5E
BAAH 24k 42 8 A [7] 56 P (STARD7'2! MARCH6'® | YEATS2™,
TNRC6A™ . RA PGEF2™) N % L) TTTCA & 5L H] 5|
BRI FCMTE S, 2019 AP [ A BA K5 i Flph 280572
T2 S 2 )/ N 55 R R 25 BAIE (cerebellar ataxia,
neuropathy , vestibular areflexia syndrome, CANVAS) 1) EUJ% &
25K RFCT SR & F X AAGGG FAY 1 1200 )t —Fi
UL R RGP, 2 5 Tian Y SFRHIESINOTCH2NLC
5’ UTR KA GGC AL e A% (neuronal intran—
uclear inclusion disease , NIID) A EORIE K | 7 T 146 & B 1% 3
GGC E 5 514 #%JK (Parkinson’s disease, PD ) B[ /K 2%
25 (Alzheimer’s disease, AD) P JJ1ZE 45 M) 22 A £k (amy—
otrophic lateral sclerosis, ALS)™! \g/%gf%gﬁ(multiple system
atrophy , MSA )P R k5 VEFZ B (essential tremor, ET ) BUEE S5
X, 2020 4E Deng J 2505205 3 HR I 72 355 4 LSS (oculopha—
ryngodistal myopathy , OPDM ) [ 55 —E0W 2 GIPCI 1R 5°
UTR X GGC HH , BEE FEFRAINE AR M A e, U HE K
KIMFHRH , M2 RGEBRER T C T 2RI IR E LY 1R
R SE RS RARE .

1.2 AP Panel

XFT V22 R GEIBAL R UL, I PR ALAE X 52 2%, 1M

H BRI B R A 1 —A IR 2 —A~ 7T
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ARG 22> JE A 1) Panel A2 m Al 45 R BHIE RS, HeT—
A% (next—generation sequencing) A i) B Panel 1E
T LTI (DB 5544 S BTPEROR , I HSP .CMT (PD |
JE & LK F1 %65 (primary torsion dystonia, PTD) %5 ; @Il &
FAVAL — L , AU 55 ; G R 2R LA L A [7]
PRI, U s A VR O AL LR B R RS SR AN R
(adrenoleukodystrophy ) , 15t %P ¥k 1M N (1 57995 28 6 IF kAR
12 (hereditary diffuse leukoencephalopathy with neuroaxonal
spheroids, HDLS) | Y € & 35t £ i TR 1 52 7 AN R
(autosomal dominant adult —onset demyelinating leukodystro—
phy, ADLD) | G (o fA i P35 A2 P i 5 Do £ B S5t AR AL A
P (cerebral arteriopathy with subcortical infarcts and
leukoencephalopathy , CADASIL) %%,

BEDH Panel K HAT 805 AL BUSE AR 1, 5
A P 4 5 PR L P R R PR A e, AR [
PRURSE I 22> ) Xof A [ — 2 5 1] 5 ) 3 [H] Panel J A58 4241
[F], — ARG SR A T TN A 22 5 R 3 A BE 6 128 1) Jik A
A1 FR AR A R | B 2 K I B AR £ 328 ORI Aff (variant
of uncertain significance , VUS) fZ8 5 | S 8505 RS I 2 45
LT BB TR, [RIHG g0 ARSI (Y B DR B TR 2
HUE” BRI LZEIINGN , & 172 ARG Panel 12
LN 30%, Horb 156 DR AR K UL A B R BUR R,
DAL B3 2B A0 A DR 3 22 T SR R K, T
A B DURGIN 2 w0 PR ORAY | R e 55 5 e I R 4
SRIFED , Mo FECHAASCIER Y II2™, P, SR
Panel P, VAl R B A 5 BAF AN O S R rh 2 5 A
5 RTERIBIA R — I
1.3 A2 Fam A Ao bR B A 5

AN F YT (whole—exome sequencing, WES ) Fll 43
R ZH )7 (whole—genome sequencing, WGS) RE 1118 47 F F 3k
Panel BIPE S 2R B AT DIPFREBOR A ARG
P18 2 R PR ) B 7 35 PR 14 B RERCHIE P 1) SE8T , SRt
R TIRAE T RIS R BT R R R T B
& AP HAR BT R, WES Il WGS 28 iU Ak
DX Panel F1ELEEDRIN R, i 44 S 5 DR B0 AG: DU 9k RE AT 23 A 10
e eI PR

PEAE , e PR A B E A TR R WES T
(HWTERZ 25905 53 B T RE T LA TS0 8UiR Y]
PSR DR B i 3R 5275 )7 AT e i i
I8 B SRR R — DI I SRR 233 B0 272 1 T

R0 (A RGN S50 % T AR B R I I G 3R  ot
SRR EOR AW e 1B T e ; @R B AN
LR A -SRAN A S - RAIGEREAN 58385 | T S 1 R 5 | ik
PR E R RS, @RAER LA 250 AT AT 9 200 4~1E
SERCIESE 5 P I, e PETE AT SR, R, o T ek

PR Hb 4 25 WES (912 818 11 PR s A= % I DR 26 20 F AL 3
i HLATE AR, BERIN A Bk FARIED , 53 4 i Xl
P — 7 A SCHR AR A5 R B 2R AR ), DR R A W) i
XI5 SR B Fr s 191 64 T 5 P340

WGS JLF- 1] UG I i A5 356 PR 4 28 5 20 (A 2878 3
ARGAS B DU 5 R BRIN  FAR A ) Ak T ST AL
TR R 2 I 2 T B A I IS W SR R R B LA
JZ RN RS, RIRAE , WGS 78 LHE B AL YR T 12
W3R ATk 41% , W]k & T e A AR [ 41 53 B\ BE IR Panel %
PG S PRGN TT 1 (24%; P=0.01) , S [ JEPRAGIA AR 1L
WGS PRI A5 5 (2 W 3 &8 mT R Sk e e A I ik, i F ok
ZH0 CNV TR A TN, WES R ISR WGk
WA T RE A & — R BON & F 741, BT LA WES 2007 CNV (1
B R (R WGS 38 i A W5 B 5 W 5 ) R Ik A
MY CNVEH U1 WCS K I— 2% IR 835 (1) TENM3
HAE 4 S tafk LR EE ISR L AR CNV HR R
fife o SR T I R R A | E— 2L 2R WA B2 4 e B o A 1
TENM3 3R &AL G AT T X Y@tk 10SEC2 3 I,
1QSEC2 FEPH 1 7 221 32 BRI A 15 DA R J8 8 8 ) e it 1)
JRHE SRR TE 50 AN & B IR A B, WGS
Xt CNV (R AT 35 18% , & B Y (AR T 451 \MLPA T
B 3 AR, HETEHEY 1 WGS(PCR-free WGS)
Z SR GC i X g M A58 /1N, A 5 B RS — 1k
S TSI PR B B B T A B R
B 00 7 A T B AT SR GG DRAS 2132 I,

2 IAREMEREURAECEXEEZNER

TEPEATE A FE DR I HE A S T i AN [ o B0 ik
1A S 2 AR T B S R A T S A T 4 TR A I R 2, DA
T W R 78, (81 AN A BIF 5 1T AR R I R TAE Pl 3] 1 44

35 BB W TR EATR 10 4F R4
F RS " TEAMBE S Ik I FLIRAZ AR PR i WES 2B e
ATP7B J:H I RI—AbZ4 5 35978 ¢.A2785G(p1929V)  {H A
SORBA  FFR HGEA Tl R PG 5 A S EUEE A T 52

SLFRL8h 7 5L BR A WU ZERE R B, R Ikt A SR s 1R
ACREIE A IR BT AR L B K-F 36, 2B AR R LS Rk
BIEZW AT UEZE RS (progressive myoclonic epilepsy,

PME), 2w E 5B WES B4 J5 76 1 W R I FRAE (sialido—
sistype DBYEOR L NEUT |-k — AL 86 R 7% ¢.A544G
(p.S182G) , W HGuEE ACB: B IR IR HEA TSI B 4 il , 45 R R
SCEEBI N AR A 578 IR IR AN e e —RE A A 2878 . ik
UL 1 A 2 P e 5 DRLRG T 1 1y T, A B0 4 e 2 PR ARG T

FIBA 2R | TR AR A - 48 B2 W ]
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R R W], B~ NSEE A A e 80| A T g ik AR 5
(loss—of—function variants, LOF ) FIZL T~ VUSE- A 1 5 )
WES 3 i $i 13 i85 150~500 A3k [R) 58 78 5% By 2 58
AR RN BRI 24T 40~ 110 Bl A2 3L PR A8 S K8
(human gene mutation database, HGMD) H#{ ) & A #5748
PR S0 BB Y BORT 2748 15 2 DL AR B PR S 2 TR] i
FURASFFMELIE R, WES 88 WGS 7E42 w12 Wt PR 1 [ if
AHEGEERH Panel 7=/E T 58 2 (1) VUSP, Sy 5256 % 0 176 48 511
PeAegai R T E Rk, B it 3 PRSI 45 5 v 2 B AR 5
HEAT B0 RGP I 35 PAG I 55 56 2 2 B A 5 [ s
A f 5 RN 4H 22 2% 25 (The American College of Medical
Geneticists, ACMG ) il & 1) )7 31 A8 S A 1524 R Y

A B 2 E A W AR 5L 1) S 3 R IR S Ak
N A7 7R AR S (BB HUR 2 DR R IR R AL, 3¢
WRARIE I 1 B T R 2 R R /N S W P I S
TR BIL, FACBE 3 SR IS, R IR 2 A TE i 4 e
WES 16 MCPHI 3£[H R B 1 A4l E R R AE .421_422in-
sA(p.Ql41fs) fHIZNLSATEMRE 2 MR L ER . Z
Je 1B L BT, TR R B ALGS I CLNS 4576 1
WAl 5878 e AT S IS # B S H A G DT B b e
T IEUEA I RS, BT S b i A 5 AR S SOk
B IR R R AL S B mZAEN , R R NI B
MF] 55 SR TR 5 A ] 2828 1 A A I RAE IR, BF 5T
FABR T ISR FA 4 BT e e RS A T 2 H A
FE DRI P 2 LA S 3 Y 98 7% 171 ff (mutational burden ) ¢ 15
FREE, G4 AR A BN i E] 1 4] CADASIL 3%, WES
K5 4 78 A6 NOTCH3 36 R L AEAE 1 W R GG 75
¢.2656C>T (p.R886C) Fl ¢.6202G>A (p.G2068R ) , 2% SCHik 1 %11
SN TR LA KK FH 5 H (epidermal growth factor-like
protein , EGFr ) T & IX W 25 f Jbk 44 2 2 11 8% 5 A 28 48 (R
¢.2656C>T) 7 HAT F g B0 LR, i LA FE s AH O3 R 1
7 SR T M A SOk 30 0 UE R A A S 0 S T — 2 B
HEORTE PRI I PR s A 568 5 PRI ARG 245 SR 1 i e AN g e 4
MRA 255 % AT, T BT — R BG40 5, XA 4 15 3E
T AT, Ay A3 S TV a8

Wt e 0 P AR A i PR R A X o 8 R A
TR SRAAE AW T, Pebt a1 192 IS I B AR A Bl
TS, D B AN B EL o A st B R A A% R 2 )
M7 675 5 PR PR AGL A58 W2 W7 i s PR 2 A T LAY Bl £

T E AR TT I 58 R Z 0 1 AR S i 2R SR S R A T T
T 5 Sl BRI A TSR A AR B EOR AR R R R
Rl 25 SR AT S 7 B2 W AR | BELT s 1 A S % o

WA, AT HOR Y Tz 0 R 28 R G ist tL i 3]
TR A R | VR 20 22 1 B30 ik PR i 4 o A 3L i R R A o
2053 A5 A PRSI A T i AR 22 PR 155G, AN )
S I 1 £ 00 i DR ) 7 B 22 VR, B A RO
A R B Z — B RS, O EA 1 H
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I S AT DU B S AR (A R . (78 S P
TR A (4 Mutation Taster\PolyPhen—Z)Wﬁfﬁ PEIFAE100%
A IS 2 BRSNSy AR 23 B)— L Eioh 5280
FRIERA NFE RS, 3 BB 275 98 8 R 2 i ik
(s AL il 6 2R T AE Y BN HE R HFE 2R T i E0R 5
75 p.Cys282Tyr AEALIE AREPAIR B8 1%, 5 A5 AR,
HHAE>5% 19788 St IR A LUK 25T 12 ) B3| BT LASE
PRGN B2 AT P22 R Ay - 15 IR 0 B B8 A 6 35 1
PR A BORHED o HR, 380 S ST e B DR 2R 3R AR DG
TIPS B Ay 5 20 QO B0 56 8 1A TT BEAS 3R B AR B
PRI | B BEE RIS b N4 | 7 b st A% A =X B0 SR
HEE L, DRI A B P AR A B 1 5 R P 23t IS
AL (i B B R R — AR R B IR RS AR, R JCHE
ARIEA ), 0PI K FR s AL 7 ol 1T IRE U H S KR
JNBF, T2 G BRI AL OB ), BE AR IR U L R 1Y
BH SRR IR LA, FEGERLEL
U Rl — A FE D AN [7) 58 28 S S5 O, BT LA I 1 Y
SRAR R AT D) REMF F0 %] 2k 5 8 — 3 B AH S 43 B &G
B, @RI 25200 2 A a2 AR RAURHIE (R
2240 ) , tean, vep JEPR gt i A BT 2 5 2 R0 240 %
B, S AL LS 7 R AU T R S 2 R SR
F N A, S R OCEE AT RSP i, KL A
SRS AT e | B PRGN 45 2R 1 3 BT R i
PLAAFTERE 22 ()8, U AR, X T2 PRR I o 24 e i 2 R
WSO PE S B iU 2 S BRI R, A b B
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IHCAI S s PRGN S Bl DR 125 A= DI I A2 e )
— A ED TR ok B AU 4R s W il 45 (B
KAWL OB RIZESE 40
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