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Advances in the role of microRNAs—-mRNAs regulatory axis in the mechanism

of cerebral ischemia-reperfusion injury
Lt Junjie , Jiang Haiyan ,Peng Lijia, Wang Quan ,Shao Jianlin
(Department of Anesthesiology,The First Affiliated Hospital of Kunming Medical University)

[Abstract]Cerebral ischemia—reperfusion injury(CI-RI) is a very serious complication after ischemic stroke,which causes irreversible
or permanent damage to the neurological function of patients and has a high disability rate and mortality. microRNAs(miRNAs) are
small endogenous RNA molecules that inhibit the translation of target mRNAs and regulate the expression of at least one—third of the
human genome by hybridizing with the 3'=UTR terminals of one or more mRNAs in a sequentially specific manner. In recent years,
more and more studies have found that miRNAs can participate in the pathological process of CI-RI such as cell apoptosis, oxidative
stress , neuroinflammation and so on by regulating the downstream target mRNAs, and play an important role in the injury or protection
of nerve function. This paper reviews the research progress of miRNAs—mRNAs regulatory axis in the mechanism of CI-RI,and deepens
the understanding of the mechanism of miRNAs in the treatment of ischemic cerebrovascular diseases.
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R WA T E BRI S, Ak, ok 2
FOFFE & BE miRNAs 38 4 0] 345 mRNAs 25 CI-RI $ifji
(R B B AR . AR SOW T JUAF miRNAs-mRNAs J# #5178
CI-RI " {4 I B AL A WF 58 647 9 40 5045, 2 miRNAs—
mRNAs J#EX) CI-RI iFE AR AR PRI f S

g R 5 N W SR E A IR QN B VAN o e = 8 7 el
I 9 O O S PR R 4R CT-RI &R & R ) 32 B B A
FEHLN, 1K 5B miRNAs B ) 5422 2L mRNAs Ay 40 5
2 mRNAs (93RILIET 722 5 0L E CI-RI A 995 BRUE 75 B 6
(F1),

# 1 miRNAs—-mRNAs 7 CI-RI {12 id 12 f i HL§
miRNAs SCYGEIR CI-RIUFZE(L 8 mRNAs  FEHLHI EZ PN
HHT %
miR-211 OGD/R T PUMA T FE A JE ISR AT /D Caspase—3 ik [3]
MCAO/R
miR-874-3p  OGD/R TR BMF A RRE ML T2 T BMF FI BCL2L13 Kk (6]
BCL2L13
miR—29a OGD/R T AQP4 TS IR SN FER , AL #E Bel-2 AT Bax 3Rik [7]
miR-99b OGD/R i IGFIR T FEAR S AL DA A B g 1 [8]
miR-496 OGD/R T BCL2L14 kel feya T/ 1 BCL2L14 =ik 9]
miR-106-5p  OGD/R S Mel-1 TS5 PEEREIELN, ATTAEE Bel-2 FM Bax ik [10]
miR-544 MCAO/R T IRAK4 T IR E AN HIFEIL , AL SE Bel-2 AN Bax 223k [11]
miR-26a-5p  OGD/R T DAPK1 3 IAJR AL, ek Bel-2 AN Caspase Bax 23k [12]
MCAO/R
miR-138 OGD/R i SIRTI P B2k Je AR pE R SR A, AN A2 2 Bel-2 AN Bax 3Rik [13]
MCAO/R
miR-219a-5p  OGD/R T Pdedd LRI F AT REIL R, AT E Bel-2 FIAIH] Bax #ik [14]
MCAO/R
miR-224-3p  OGD/R i FIP200 PR 5 PR B IE R, AT AN Caspase-3 ik [15]
miR-155 OGD/R ] GATA3 P22k Je A UE R LR, AT 6] Caspase—3 ik [16]
MCAO/R
miR-429 OGD/R RG GATA4  MIFR G e HESRE DR AT Caspase-3 ik [17]
miR-10a OGD/R LA PI3K S FEAJ TS PI3K/AKYmTOR {5558 #, AT Caspase-3 | 18]
Caspase—-9 1 Bax 28315, {2 iE Bel-2 Fik
miR-137 OGD/R T Notchl 1 FRE ] Notch1/Hes1 555, 1/ Caspase-3 j7A [19]
miR-124 MCAO/R T Ku70 F IR VR TR P A [20]
miR-223 OGD/R ] IGFIR TR AR, P A [21]
miR-370 OGD/R | SIRT6 P 23k 5 R HE L R ek , AT /D Caspase—-3 724 [22]
MCAO/R
miR-431 OGD/R i Rho B IR AR T HOSEE , I AR [23]
MCAO/R
SRR C
miR-144 OGD/R 9 Nif2 PO BRSBTS Nef2/ARE BUEAL IS 530 %, 82> ROS \LDH j=4= [24]
MCAO/R
miR-142-5p  OGD/R (] Nrf2 IR KI5 HOE Nef2/ARE HUAAURAS 538 3, i ROS MDA B [25]
SOD j7=H:
miR-153 OGD/R -9 Nif2 P 235 J5 WO Nef2/ARE $T440 15 53l i, 3802 ROS MDA, 3% m - [26]
SOD j=H:
miR-93 MCAO/R w315} Nrf2 P35 J5 B0 Nef2/ARE $U0(F 53 i, 382> ROS MDA, ¥4 [27]
SOD j7H:
miR-144-3p  OGD/R T Brgl Sob 26 K S5 I R 223k YOG Nef2/ARE B AL (S Sl Bk, > (28]
ROS.GSH, 341 SOD 7=
miR-652 OGD/R T NOX2 T FE R SRR IE R 235, el ROS 77 A= [29]
MCAO/R
miR-124-5p  OGD/R T NOX2 TR FRE IR A 98D ROS 774 [30]

MCAO/R
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&gk A
miRNAs SEEGHR CT-RIT 57284k #8 mRNAs ML EZPUIN
miR-217 OGD/R [ SIRT1 T ek Ja e IR L PR 3k Jdiz ROS MDA, 38 im SOD j=2E [31]
miR-135a OGD/R ! GSK-3B kil /G e gHEL L R 40k b ROS \MDA 15 in SOD 7k [32]
miR-7a-5p MCAO/R T a-Syn T FRIKSE MR Sk 92l 3-NT 77/ [33]
miR-375 MCAO/R T Ctef IR E AR IR A 9 ROS MDA 34l SOD 7=/ [34]
miR-29a MCAO/R T PUMA i FR IR 2k | hs> ROS MMP 77 A= [35]
miR-421 OGD/R i MCLI T ek JE e IR L PR e 3k Jdiz MDA 38 SOD 7= [36]
miR-224-3p OGD/R (815 FIP200 AR fE e R RE I 2638 Wb ROS 774 [15]
55 9RE SO A&
miR-193b-3p MCAO/R i 5-LOX  ADiRIATEER Feak A ARIEA BT LTB4 Fl LysLTs 381k [37]
miR-223 MCAO/R T NLRP3 T FER SR IR L R F3k | v RAE IR - IL-18 il IL-18 £ik [38]
miR-19a-3p OGD/R i IGFBP3 i3I 5 fE SEHBIE IR R4 D8 SR AE IR 7~ TNF—o IL-6 FI IL-1B [39]
MCAO/R FEHE
miR-155 OGD/R i MafB I FRIR S P HERERE R R 3K | 98D RAE R TNF-a IL-6 IL-1B F1 [40]
MCAO/R iNOS &7 4=
miR-211-5p OGD/R T COX-2 P RIKJFITIRE LD 3Rk | /D RAEIH F TNF-o IL-1B FME A [41]
MCAO/R Ji PGD2 %577
miR-338-5p OGD/R A Ctgf J ARG PRI R R GA W SE R 7 TNF-o IL-6 T IL-18  [42]
MCAO/R FrHE
miR-544 MCAO/R T IRAK4 1L RIRJEAMHIHERE D S0k I JOAE N TNF—a fl IL-18 35,80 [11]
il /N B AT S A
miR-182-5p OGD/R T TLR4 o A5 M TLR4 SR B kb /NI B4 A TNF-o IL-6 F1 - [43]
IL-1B %3k
miR-217 OGD/R 3 SIRTI P Fe ik e i R R 2 5k A NF-kB A& 3 4 | ekl /b 4 A [31]
F TNF-a IL-6 A TL-1B ik
miR-146a MCAO/R TR IRAK1 Job R SR A FE SR PR R B NF-wB SSE M WD RAEF T [44]
TNF-a IL-6 Fl IL-1B ik
miR-22 MCAO/R T NF-kB RSl NF-«B JSAE i i/ JEE N F TNF-o IL-6 FlliNOs - [45]
Fik
5 A M LR B MR G
miR-107 MCAO/R - GLT-1 PRk E A R B R 2Rk Dl A SR ) 24 r R AR [46]
miR-1000 MCAO/R T VGlut SRR L R ek | W A R 1 24 A i s e E [47]
miR-223 MCAO/R T GluR2 F F IR E IR R Fk | A 2R i 24 v SR B E [48]
NR2B
SEL LRGBS
miR-30 OGD/R R Beclinl LR JE LA A EAHSSZE I Beclinl FEIK ] [ 1 [49]
MCAO/R
miR-298 OGD/R T Actl 1 FER IR LN 635 40 Beclin A B {2 2k 4 [50]
MCAO/R
miR-138 OGD/R T SIRTI S K S AR IR R 0k b LC3 TT/LC3 T A Beclinl A2 A M0 [13]
MCAO/R il 1w
miR-202-5p OGD/R T elF4E TR R AR R ek 9 LC3 IT/LC3 T AR m i il [ 1 [51]
MCAO/R
miR-124 OGD/R [ PI3K T s A gk PISK/AKT2 38 % i [ mg: [52]
MCAO/R
5 A B B T A G
miR-539 MCAO/R T MMP-9 2 20k J 0 o] 00 il 0 I D] 3 2K I 344 o 240 M 25 1 B2 B, B 1K BBB 53]
EBE
miR-21 MCAO/R T MAP2K 35 5 ML L 223k T MAPK S8 % , % BBB 45 [54]
miR-429 OGD/R A Cxell S FE TR SR A I PR e | Wl i A LA P R A b [55]
miR-149-5p OGD/R T SIPR2 1 FEK SRR L IR Sk AT A 4RI RS, BRAG BBBSEIETE  [56]

MCAO/R
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1 miRNAs-mRNAs #5 CI-RI IF4RBAT

T 2 0 A A P s PR S T 0 — R PR e Ty
2, FEZGUAT AR T 2 PP T-HISCE 1Y . miRNAs-
mRNAs FHTER TAHOCHE P b A4 Bl e o s
P At 98 TR T A B SRR SR A CI-RI 5
ZHR AT B MR -2(B cell lymphoma—Z,Bcl—Z)%
JE AR AR VR A0 L T TR A O VE T AR BT T 8 (i
Bel-2 Al Bel-XL) M T8 1 (41 Bax il Bak ) Fll Bel-2 [] 75
3, 3(BH3) & [ (41 Bad Bid #1 Bim)®, Zheng YY 25"JF5¢ %
B, 1E AR5/ 2 S 2 M (oxygen—glucose deprivation/reoxy—
genation, OGD/R)——CI-RI PRSI 1 miR-29a 1Y
PRI AR, 2 3K miR-29a P 3 1k HE i 490 1 7K i 3 2 1
4(aquaporin, AQP4) [ FZIR AL HE Bel-2 FHH Bax YAz B M8
HZ AT, Qi DB MR T KM, id ik miR-99b 1]
DIFR ] 1 95 AR A 5244 (type 1 insulin-like
growth factor receptor, IGFIR) [ 3% ik K {2 #F Bel-2 FI91P il
Bax (142 i, [FIRE 1Y, 3 235 miR-496 T LA B4 # i) 41
BCL2L14(Bel-2 T8 K FRIK b1 ) Y IX i OGD/R
ST T, Ak, Jiang DX ZEOHFIEIESE, E iR miR—-
874-3p Al E # L) BMF I BCL2L13 PN I T2 4K 11 5
DU R LA A R IR M D OGD/R PR By i i A 1=
Li PF ZE08F57 % 3, miR—-106b—5p 75 OGD/R &b 38 fit 18 2 40
M RIA A e B, I #E I Mel-1(Bel-2 $UIH T8
FIZIRRL ) A RIBE Bax A= G A £ A 1, 7E CI-RI
R R A PN Sl R ——J G v 30 JUk A 2 — 59 7 (middle
cerebral artery occlusion—reperfusion, MCAO/R) i {5 45 %4 v |
Fang R ZFUF5E & B, i 4635 miR—-544 38 1 #0046 (14
F 1 ZARHM B 4 (interleukin 1 receptor related kinase 4,
IRAK4) HZ3R 0800 Bax FISE N Bel-2 A R i #016 /1 Bl ik 21
Gz eI T, FEA OGD/R IR MCAO/R RS
3 miR-26a~5p REGSHE ] 40T ZE 1A OCHE 1 1 (death—
related protein kinase 1,DAPKI) 1353k Ml Bax FIfE F
Bel=2 Az ORI /b AR I JR 71215 10T 9 miR—138 3 i # fi] 2
PEE LBEALHE 1 (sirtuin] , SIRT HIZFIEANH] Bax FIfE#EBl-2
A, Lu MY SBT3 3K miR-219a-5p i i #
] 4100 1 W 2. iR 7§ 4D (phosphodiesterase 4D, Pdedd) i) & ik
[IDELGE R R

2 bt &2 2 A i (cysteine protease , Caspase ) 5 % J& 12
I T R R A P G, A A O T A 9 [
Deng YM SE0WfFSEIESE , L miR-224-3p i@ ¥ [l fil FAK
FIGH HAEH B A 200(FAK family interacting protein 200,
FIP200) Y Z&ik M Caspase—3 A2 AL IS OGD/R FIFEL i
MAICMT . GATA 455 E H (GATA) 555 RN 1 GATA 45

AR Jing HY ZE098F 58 & B, OGD/R J& #l 2 21 Jfd
miR-155 W] F 3R, Jf38 o 80 1] 0 ) GATA3 (1 % 35 {1 i
Caspase=3/A 1, NI E A EIE T, HA TRV, miR-
429 LIHNILL GATA4 A AEIEPIEEIN Caspase-3 1/~ AE M i
# OGD/R WM A ICIH T, Wang JZ SFUSHF5R W] 411
il miR—10a 31k 8 FLH2 8 n) VE F T @ BE Bk ILEE -3 33 6
(phosphatidylinositol 3 —kinase , PI3K) , M fij # 7% PI3K/Akt/
mTOR {5 5@ 1%, NI Caspase-3 Fl1 Caspase-9 Rk,
OGD/R I F M Z AT, Shi FK SWF5Y &I, i 43k
miR-137 M THEIE A Notchl ik, Wil Notchl/Hesl
{5508, /> OGDR Jai EphzocH Caspase—3 Hel, AR,
TE/NRPC12 #2410 OGD/R BERYFT MCAO/R AR 3 5%
ik miR-211 #RBEMEINH pS3 1E RIPA T IH4% F T (p53 upregu—
lated modulator of apoptosis, PUMA ) i /D> Caspase-3/E
B, AN gE TR,

1122 miRNAs BT B4 0E H FRSL B mish | CI-RI
JEHMINT: , Zhu F SR & I, FIH miR-124 $8 m 4
Ku70 A3k, AT A K SR MCAO/R J5 s 2 21 o 22 40 i
FIPET, FE miR-223 ML IGFIR AR {E#E OGD/R 5
P2 TG FHFNII I TR0, ] miR-370 FYFRIATT LA 1]
125 = L WAL 6 (sirtuinl , SIRT6) A I8 MM CI-RI J5
MM T2, Rho J&/N3F GTPase MR — I, £E
A A A A P EE AR I, Han XR 25296758 & B, miR—431
AERE 01 Rho MR MM OGD/R il MCAO/R 5 S 1K
RS2,

2 miRNAs-mRNAs 315 CI-RI FEX M

CI-RI J& 15 M54 B % (reactive oxygen species, ROS) |
TN 1% (malondialdehyde , MDA ) %5 48 Ak 49 J5 KB A 1 % 8 4
Ak W) 15 Ak it (superoxide dismutase,SOD) SR ALY R Y A
I A 2 I A P 8 AT S D AN 1T 338 1 S Ak R
Oy, IS EAMEAE T EAE R A, 72 miRNAs fE
P AR 225 CI-R1 755 0 S A RIS N, f2 ksl i)
P2 A0 0 A S AR N SR 5 . BT B2 A G T 2 (nuclear
factor-E2-related factor 2, Nrf2) /4t A 5L G (antioxidant
reaction components, ARE) {5 51 % J& 40 41 S8 A0 B 3% s by
4 DG SHE 21, Wang N AEPIRESE & B, #17f] miR-142-5p 1)
PR H LA Nef2 Sy BEIE RO Nef2/ARE f5 538 %, 36
SOD, Wi MDA, ITiAE OGD/R 5 S 8RR . Ji Q
AP W FETE A 288 OGD/R BRI R i miR-153
RELL Nif2 ST T Nif2/ARE {55 38 B4 il 200 22
SAALREAN 5, £ KB MCAO/R 552 i i miR—14424
1 miR-93PMHESE ] 2 HE Nef2 B2A  JHE Nif2/ARE 38 %K
W/ ROS 19 Az XL 0 1 A 21 200 LA R 84 . Li YR
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SRS KB, T miR-144-3p Lk Brahm AHGHE 1 (brahm
related gene,Brgl) A #E & 3 Nief2 335 | ) OGD/R fit
O AR B % . NADPH AL 2 (NADPH -oxidase 2,
NOX2) & e A A N S 0 1) — Fh SR B, AIT9E R IR,
TER A FIARSD CI-RT SR | 3 3218 miR-652 Al miR—
124-5p YIRE H H: L NOX2 S #ELEE PR ) e ik, DA 41 il
ROS B Az I8 S A B 52

AR 7E OGD/R AL BRI P 22 40, miR-217 23k i
B9 I e ] SIRT1 {23 ROS MDA Fi#li SODHY
AL, N AR R ) miR-224-3p ek [ 5 HE 1)
k] F1P200 22t ROS (942 J8 1) 117 miR—-135a L4 U 3 i
I 1] 0050 B A BT 3B (glycogen synthesis kinanse3f
GSK-3R) &AL #E ROS Fiil SOD 7=k, i aE #4240 g i
AL, £ MCAO/R AEH A BIHIAE I i miR-Ta-5p &
AR g P a—Synuclein (a—Syn) B i HE /N
SR LM 4 2 v 3 il F 4% 2R (3—-nitrotyrosine , 3-NT) it £
B, N E A VR ARG miR-375 Fik T R AGE 4RV K
F (connective tissue growth factor, Ctgf) A7 ¥ PR i 1 A i
fxZHZH ROS Al MDA (95742349, 1] miR—29a (93215 T 4
A PR T PR T PUMA BR300 T K UK ZH 21 41
AW B Bt 42 )@ 45 1 (matrix metalloprotein, MMP) F1 ROS F)
FEAEP Yue YH AFCOIFSE A B, 1] miR-421 f)2 KT HE
T A2 FEREAN L 1 10095 1 (myeloid cell leukemia 1,MCL1) i
IKBEINT SOD A/l T MDA AR, Uit T A8 AR i3 .

3 miRNAs-mRNAs #15 CI-RI J§ RIE KM

HNE SO 2 18 B CI-R1 5 i 2H 2R S PEAR 3 Y 32 22
PRz — Mk i — P T, DR AR P 7 R A TS A
T 75 AR RE SR AT RN I E 1 ke 1 B AL A 2H 2 A
miRNAs—mRNAs JAFHIFE CI-RI J5 M 28 R AE I (13 i o
KA T EEPEER . Chen ZH 55953 K3, #ERFRMCAO/R
R | CI-RIJ7 miR=-193b=3p MR B THE , I i e i
i 5% A B (5-lipoxygenase , 5S—LOX) ) £ 35 B AL K B
Bl ZH U S AEA 5 1 =5 B4 (leukotriene B4, LTB4) il
e &R 11 =4 (cysteine leukotriene , CysLTs) B 7= 4= 3 il 4
SESNL . Sha R SFPREFERW], i AHAYF AR i miR-223
T [ 0 0 A% PR 45 43 BURE 32K 3 (nucleotide—binding do—
main-like receptor 3,NLRP3) [JZ&ikIH>MCAO/R K FUANZH
SURAIMIA T A% (interleukin, IL)-18 I IL-18 [/ 1,
MR CI-RI, 331k miR-544 T4 m il A2 -1
ZARK S B 4 (interleukin—1 receptor associated kinase 4,
IRAK4) [ 2358/ MCAO/R /N FUBR L 20 20 TL—18 A1 ik
JR YR AL A F —o (tumor necrosis factor—a, TNF—a) [ 42 B, | [A]
IF4 /0N IR 5 A0 B I 5 A1, Chai ZH ZEPWITSE R 30, T 94

miRNA—19a-3p 1143 153 o ¥ ) [ R 12 AR AR K TR - 2%
44 M 3(insulin-like growth factor binding protein 3,IGFBP3)
PIFRIA MG CI-RL J5 RAE B TRk . SIATFREY, N
T8 miR—155 14705 38 i 40 1] A1 2 JUME IS 27 4 iy SR e B ) B
(musculoaponeurotic fibrosarcoma oncogene B, MafB) [} ik 1]
W CI-RIJ& B9 RAE S, Peng Z AFHMIFSEIIESE , i 321k
miR-211-5p PAFRE AL -2 (cyclooxygenase-2, COX-2) Ay #l
LB 30 CI-RIJ5 TL-18  TNF—o 251077 Az | Jali 4% ffe 1 v 20
U IAE RV, Yi XJ R 5 3, i 23k miR-338-5p LA
Crgf S FLIERHIM S | B ISIEN B4R, 23 CI-RI,

Toll BEZ A 4(Toll-like receptor 4, TLR4 ) J& 5 B 1) 43 4iE
SR il A, Wang J SESHE5ER I, 18 OGD/R 75 T
INEE IR AR 5 260k miR-182-5p 1M LA TLR4 Jg L3 A
TR TR TNF-a TL-6 Al IL-1B AR, R 40 i
CI-RI,NF-kB S T Toll BERZAR T UiFS 5 SO S il %
T EAE S ) — B A B B W), #% K 7 —kB (nuclear
factor kappa B, NF—«B) {5510 I d5 5 LY 295 SR A5 5
MWHZ—, Rao GF SFPIRFSIESE , #11] miR-217 3518
AL LA SIRTI DB EE M T BEAZ NF-«B B 1K, AT 2
OGD/R S TEh TNF—a 1L-6 1 IL-1pB (94 B, 757N
L MCAO/R B, 13 miR-146a RESLINH] I/ -1 21k
AHILIE 1 (interleukin—1 receptor associated kinase 1,IRAK1)
PSRN NF-<B (197745 el i fili 2H 2 ) S AR A
Yu HY S50IRFFE A B, 1 3k miR—-22 EL4EHE [ 4] NF-xB
fIK, T MCAO/R BRI Bl e LA 4 2 SR AE A 1
IL-6 /TNF-a F1i75 38— AL A5 J8# (inducible nitric oxide
synthase , iNOs ) F 7= A= 3] S 45 S b

4 miRNAs-mRNAs 315 CI-RI B¢ EHSERS

R

CI-RI JG BRZH L b 2 PR IR (Y 22 s PR HIBH .4
SR, A M R IR AN A SR 1 R i TR B AR DG A2 (K H 1Y
o 222 A B A B A7 A 28 A 7 A wEPEAE R 3 i 4 M B
T, AHOEWFFE LI, miRNAs—-mRNAs PRI AR 520 CI-R1
JEARZE AP N DS AT PE R KA G SZ AR5 . Yang ZB 454
W5 LB, B R EE B (magnesium lithospermate B, MLB) &
J7 MCAO/R iR BV , 384 T 9 miR-107 #L1 e 4 2
TR %12 1 1 (glutamate transporter 1,GLT-1)F&35 | I [
BRI Z P A E R (glutamate, GLU) B, JiR Hoph 2 75
PEFER] . Verma P AFWUIFTE R, i %1k miR-1000 AEAEHE
T 1101 28 940 B S R 55 42 1R (vesicular glutamate transporter,
VGlut ) 35, 41 48 2 XS Al 28 T0 19 2% A 1R 5 PR AE
Harraz MM S50/ IN US4 i B P L B 05 a9 e B
38 miR-223 figil id 74 2 RS2 AR WA GluR2HINR2B 3'-
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UTRAP SRR GluR2 H1 NR2B 7K, 4547l 20 g #5245 45
P2 R 1l — P 6 5 B % A MR B 05
5 miRNAs—-mRNAs ¥15 CI-RI [54H 88 B 1%

W AR N A R B AR AR
FEFM, AWES S CI-RI A5 B AR | Mk £ (BT 9 3IE 52
miRNAs—-mRNAs e CI-RI S5 R 24N Y 0, %) CI-
RI J=HE ARSI, Wang P SERRIF5 2B F 8 miR-30a )3
TRLL AL Beclinl JHUER itk CI-RTJ5 Beclinl4
A2 400 0 2535 CI-RI, Sun HX SF0OMF50 & B, 3 31k
miR—298 i i) 4 [ i) NF—kB #7551 1(Act1)ﬂ’a%%itmﬁ
i Beclinl /-S4 A M INEE T CI-RI, Tian F 4509058 i
RPN BRI FIIESE i F3K miR-138 a3 ¥ () il STRT1
Fik, FEAR LC3 T/LC3 1 1 Beclinl 25 1 235, e ZAm il #h 22
YA A MR CI-R1, Li B 48PWF5E & 9L, 7E40 OGD/R
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