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[ Abstract)Objective . To analyze the biological processes and signal pathways of differential genes related to ferroptosis in the liver of
ApoE~ hyperlipidemic mice,to construct a molecular regulatory network of liver ferroptosis,and to reveal the pathogenesis of hyper—
lipidemia at the transcriptional level. Methods : This study selected 7 C57BL/6] mice as control group and 7 ApoE~" mice as model
group. The control group and model group were fed with normal diet and high—fat diet respectively. After 16 weeks,the serum levels
of triglyceride (TG ) , cholesterol (TC) ,low—density lipoprotein(LDL—C) and high—density lipoprotein(HDL-C) were detected,and the
liver samples were analyzed by HE staining and transcriptome analysis. The distribution of ferroptosis—related differential genes was
analyzed by Graph—Pad Prism 8.0.2 software. The protein—protein interaction network model was constructed by STRING11.0 platform.
GO biological function enrichment and KEGG pathway enrichment were carried out in DAVID database. The ClueGO plug—in of
Cytoscape was used to visually analyze the function and metabolic pathway of ferroptosis—related differential genes. Results : Compared
with the control group, TG(1.19 £0.09),TC(2.31 £0.15),LDL-C(0.29 £ 0.05) ,HDL-C(1.68 = 0.06) , the levels of TG(1.75 £0.08),
TC(38.80 +4.03),L.DL-C(36.27 £ 3.80) in the model group significantly increased (P=0.000,0.000,0.000),and the level of HDL-
C(1.26 £0.05) significantly decreased (P=0.000). The results of HE staining showed that compared with the control group, the swelling

and degeneration of hepatocytes in the model group was obvious and accompanied by a large number of fat vacuoles. Three differential

genes of ferroptosis, IREB2 (iron—responsive element—binding
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5 tH R : https://kns.cnki.net/kems/detail/50.1046.R.20201112.1729.008.html A total of 23 ferroptosis related genes were screened,including

(2020-11-13) 6 up-regulated genes and 20 down—regulated genes. Network
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relationship analysis showed that ferroptosis—related differential gene proteins were interrelated and regulated with each other. Through
DAVID database, 36 biological processes and 5 signaling pathways participating in ferroptosis were screened out. Conclusion It is re—
vealed that ferroptosis in liver tissue can regulate hyperlipidemia through multi—processes and multi—pathways,and high fat can pro—

mote the occurrence of ferroptosis,which provides a reference basis for revealing the pathogenesis of hyperlipidemia at the transcrip—

tional level.
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