
重庆医科大学学报 2023 年第 48 卷第 5 期 （Journal of Chongqing Medical University 2023.Vol.48 No.5 ）

GLP-1受体激动剂对新生儿缺氧缺血性脑损伤模型小鼠
在突触可塑性方面的保护作用
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【摘 要】目的：探讨胰高血糖素样肽-1受体（glucagon-like peptide-1 receptor，GLP-1R）激动剂（agonist，NLY01）对新生儿缺氧

缺血性脑损伤（hypoxia ischemia，HI）模型小鼠在突触可塑性方面的保护作用。方法：实验1，将P7小鼠分配到对照组（Con组）、

HI组、NLY01组和HI+NLY01组，每组 16只；实验 2，将P7小鼠分配到HI组、HI+NLY01组、HI+Ex9-39组和HI+NLY01+Ex9-39
组，每组 8只。其中，Ex9-39用于阻断GLP-1R。进行行为测试以测量学习能力。高尔基染色用于测量齿状回突触的可塑性。

通过蛋白质印迹和免疫荧光评估突触和神经炎症相关蛋白的表达。结果：NLY01对GLP-1R的激活防止了由HI引起的认知

缺陷。NLY01阻止了HI诱导的GLP-1R水平降低。GLP-1R的激活显著改善了突触可塑性的损害，阻止了炎症因子的上调，

并抑制了核因子-κB（nuclear factor-κB，NF-κB）磷酸化和小胶质细胞M1极化。在HI模型中，NLY01对HI诱导的新生小鼠急

性脑损伤的保护作用被Ex9-39阻断。结论：GLP-1R可能是调节新生小鼠急性脑损伤炎症途径的功能靶点，支持GLP-1R激

动剂在HI诱导新生小鼠脑损伤中的潜在治疗作用。
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Protective effect of GLP-1 receptor agonists on synaptic plasticity 
in neonatal hypoxic-ischemic brain injury model mice
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【Abstract】Objective：To investigate the protective effect of glucagon-like peptide-1 receptor（GLP-1R） agonist（NLY01） on synaptic 
plasticity in neonatal hypoxia ischemia（HI） model mice. Methods：In experiment 1，P7 mice were assigned to one of the following four 
groups，n=16/group：control group （Con group）， HI group， NLY01 group and HI+NLY01 group. In experiment 2， P7 mice were as⁃
signed to four groups（n=8/group）：HI group， HI+NLY01 group， HI+Ex9-39 group and HI+NLY01+Ex9-39 group. Among them， 
Ex9-39 was used to block GLP-1R. Behavioral tests were performed to measure learning ability. Golgi staining was used to measure 
dentate gyrus synaptic plasticity. Expression of synaptic and neuroinflammation-related proteins was assessed by Western blotting and 
immunofluorescence. Results：Activation of GLP-1R by NLY01 prevented the emotional and cognitive deficits caused by HI. NLY01 
prevented HI-induced reduction in GLP-1R levels. Activation of GLP-1R significantly ameliorated the impairment of synaptic plastic⁃
ity，prevented the upregulation of inflammatory factors，and suppressed nuclear factor-κB（NF-κB） phosphorylation and microglial M1 
polarization. In the HI model，the protective effect of NLY01 on HI-induced neonatal mice was blocked by Ex9-39. Conclusion：GLP-
1R may be a functional target regulating inflammatory pathways in acute brain injury in neonatal mice，supporting a potential therapeu⁃
tic role of GLP-1R agonists in HI-induced neonatal mice.
【Key words】glucagon-like peptide-1 receptor；NLY01；mice；glial cell；hypoxia ischemia

围产期缺氧缺血性脑损伤（hypoxia ischemia，
HI）是婴儿发病和死亡的最常见原因之一。尽管在

阐明HI的潜在机制方面取得了重大进展，但仍然没

有成熟的临床有效治疗方法来减少这些儿童的脑

损伤及长期后遗症[1]。因此，迫切需要探索新的治

疗干预措施和目标，以尽量减少这种神经系统后

果。活化的小胶质细胞显著促进神经炎症，并代表

中枢神经系统（central nervous system，CNS）中炎症
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介质的主要来源[2]。小胶质细胞可以极化为 2种极

端状态：经典（M1）和替代（M2）表型。M1激活的小

胶质细胞释放炎性细胞因子，包括肿瘤坏死因子

（tumor necrosis factor，TNF）-α 和白细胞介素（inter⁃
leukin，IL）-1β，它们会增强脑损伤。M2 激活的小

胶质细胞释放抗炎细胞因子和生长因子，包括 IL-
10和转化生长因子 β，保护神经。许多研究结果表

明，介导与 CNS 损伤相关的小胶质细胞表型变化，

包括新生动物的 HI，可以对神经恢复产生有益影

响[3]。因此，这些证据表明小胶质细胞的异常与 HI
神经损伤的发病机制密切相关。胰高血糖素样肽

-1（glucagon-like peptide-1，GLP-1）是一种肠促胰

岛素激素，通过作用于体循环和中枢神经系统中的

胰高血糖素样肽-1受体（glucagon-like peptide-1 re⁃
ceptor，GLP-1R）来调节血糖、体质量和饱腹感[4]。
NLY01 是一种长效 GLP-1R 激动剂，具有延长的半

衰期和良好的血脑屏障渗透性[5]。在帕金森病小鼠

模型中，NLY01 已被证明可减少小胶质细胞 C1q、
TNF-α和 IL-1β的产生，从而阻断A1星形胶质细胞

转化，减少多巴胺能细胞死亡，并改善帕金森病小

鼠模型的运动症状[5]。鉴于NLY01在大脑中的免疫

调节作用，假设NLY01的神经保护作用与抑制炎症

和调节小胶质细胞有关。本研究探讨 NLY01 激活

GLP-1R对 HI新生小鼠中的神经炎症影响，并试图

阐明这种影响是否对小鼠的行为和突触可塑性损

伤产生改善作用。

1　材料与方法

1.1　动物模型建立和分组处理

妊娠 C57BL/6J 小鼠（> 15 d 妊娠）购自北京维通利华实

验动物技术有限公司，在标准化环境条件下饲养。本实验中

使用的 HI 动物模型是基于 Rice-Vannucci 模型，并稍作修

改[6]。既往报道中，分离并结扎了出生第 7天（P7）幼鼠的右

颈总动脉。在室温下恢复 30 min 后，幼鼠在缺氧室（加湿

8%O2+92%N2）暴露于缺氧损伤 120 min。然而，使用这种方

法建立模型时，大约有 40% 的幼鼠死亡。随后修改方法。

具体操作为，P7幼鼠用 2.5%异氟醚麻醉，切开皮肤后，分离

并结扎右侧颈总动脉。在室温下恢复60 min后，幼鼠在缺氧

室（加湿 8%O2+92%N2）暴露于缺氧损伤 90 min。经过多次

初步实验，改进后的方法可以成功建立模型，降低小鼠死亡

率。对照组在出生第 7 天用 2.5% 异氟醚麻醉，分离右侧颈

总动脉但不结扎。

实验涉及 2个方案。实验 1，将P7小鼠分配到以下 4组，

对照组（Con 组）：非 HI，i.p. 生理盐水；HI 组：建立 HI 模型，

i.p.生理盐水；NLY01组：非 HI模型，i.p. NLY01（5 mg/kg[7]）；

HI+NLY01 组：建立 HI 模型，i.p. NLY01（5 mg/kg）。每组 16

只，采用随机完整区组设计。在 HI 模型建立后 30 min，
NLY01（5 mg/kg）以恒定体积 i.p. 给药，每周 2 次，连续治疗

2 周。实验 2，以随机完整区组设计将P7小鼠分配到 4组，HI
组：建立HI模型，i.p.生理盐水；HI+NLY01组：建立HI模型，

i.p. NLY01（5 mg/kg）；HI+Ex9-39组：将不锈钢导管植入小鼠

侧脑室（立体定位坐标：前囟后 0.5 mm，中线外侧 1.1 mm，前

囟腹侧 2.5 mm）。恢复 1 周后，建立 HI 模型前 30 min，脑室

内注射 5 µL Ex9-39（50 nmol/kg[8]），其他组小鼠注射相应

的溶剂；HI+NLY01+Ex9-39 组：建立 HI 模型前 30 min，脑
室内注射 5 µL Ex9-39（50 nmol/kg），i.p. NLY01（5 mg/kg）。

每组8只。

1.2　行为测试

在 HI 后 2 周，由对治疗方案不知情的观察者进行行为

测试。所有行为实验均在 7:00至 19:00之间进行。Morris水
迷宫（Morris water maze，MWM）用于评估小鼠的空间学习和

记忆[9-11]。MWM测试分为 2个阶段，包括初始训练阶段和空

间探索测试。在初始训练阶段，每只小鼠接受 5次训练（每

天1次）。每个阶段包含4个试验，每只小鼠可以在一个试验

中搜索隐藏的平台 60 s。如果小鼠找到平台，则将其带到笼

中，并在笼中停留 3 s。当小鼠在 60 s内未能找到平台时，将

其引导到平台上，并允许其在平台上停留至少 3 s。记录每

次试验的逃逸潜伏期和游泳速度。逃逸潜伏期是小鼠在

MWM初始训练阶段找到隐藏平台所需的时间。在训练阶段

完成 24 h 后，使用 1 次不带平台的试验来执行空间探索测

试。将小鼠从平台的另一侧单独释放到水中，并允许其自由

游泳60 s。记录平台穿越和在目标象限花费的时间。鼠标的

运动由连接到个人计算机的摄像机监测，通过Ethovision 2.0
相机驱动的跟踪器系统（荷兰Noldus公司）收集和分析数据。

1.3　高尔基染色

进行高尔基染色以表征海马 DG 内神经元树突棘密度

的潜在变化。将脑组织在室温和黑暗条件下用高尔基染色

溶液浸泡14 d[12-13]。使用振动刀将脑组织连续切片为100 µm
冠状切片，每个切片连接到载玻片上。通过以下处理过程对

载玻片进行染色和清洁：Na2CO3 20 min，蒸馏水 1 s，70% 酒

精10 min，90%酒精15 min，100%酒精20 min，二甲苯20 min。
最后，将切片嵌入中性香脂中。为了计算树突棘的数量，选

择具有明确棘分辨率且长于 10 µm的直末端分枝进行分析。

选取 10个神经元测量海马DG区。使用 Image J分析树突棘

的数量。

1.4　蛋白质印迹

使用研磨机将海马分离并在 200 µL含有苯甲烷磺酰氟

化物的裂解缓冲液（北京Solarbio公司）中裂解提取蛋白。在

4℃下以 1 200g 离心裂解缓冲液 15 min，并收集上清液。通

过 SDS-PAGE从每个样品（20 µg）中分离等量的蛋白质。将

分离的蛋白质转移到聚偏二氟乙烯膜（美国Millipore公司）。

将膜在 10%脱脂牛奶中封闭 2 h，并在 4 ℃下暴露过夜，适当

稀释一级抗体：抗 GLP-1R（1∶2 000），抗突触后密度蛋白 95
（postsynaptic density-95，PSD95）（1∶2 000），抗突触素（syn⁃
aptophysin，SYP）（1∶2 000），抗核因子- κB（nuclear factor-
κB，NF-κB）转录因子 P65（1∶2 000，Abcam），抗 NF-κB转录
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因子P65（磷酸化 ser536）（1∶2 000），抗诱导型一氧化氮合酶

（inducible nitric oxide synthase，iNOS）（1∶2 000），抗环氧化酶

-2（cyclooxygenase-2，COX2）（1∶2 000），抗TNF-α（1:2 000），

抗 IL-6（1∶2 000）和抗 β-肌动蛋白（1∶5 000）（均购自英国

Abcam公司）。然后将膜与辣根过氧化物酶结合的二级抗体

（1∶4 000稀释液；美国 Promega公司）在室温下孵育 2 h。使

用增强化学发光检测试剂盒测量所有蛋白质，使用 Image J
定量，并与 β-肌动蛋白进行比较。所有数据均来自每组

5 只小鼠。

1.5　免疫荧光测定

小鼠通过腹腔内输注 30% 氨基甲酸乙酯溶液进行麻

醉，并用磷酸盐缓冲盐水（pH=7.4）和 4% 多聚甲醛缓慢灌

注。切除大脑并在 4%多聚甲醛中固定 72 h。使用振动刀将

大脑连续切片为 30 µm 冠状切片。切片用 Triton X-100 渗

透，并用 10% 山羊血清封闭。使用原代多克隆兔抗离子钙

结合适配器分子-1（Iba-1）（1∶500，日本 WAKO 公司）和小

鼠抗 CD86（1∶500，英国 Abcam 公司）进行 Iba-1 和 CD86 免

疫荧光分析。然后荧光共轭山羊抗兔 IgG Alexa-Fluor 647
共轭物和抗小鼠 IgG Alexa-Fluor 488 共轭物（1∶2 000，美国

Thermo Fisher Scientific）。使用 TCSSP5共焦扫描显微镜（德

国Leica公司）获取荧光图像。

1.6　统计学处理

使用 SPSS 19.0 进行统计分析。使用三元混合 ANOVA
分析小鼠体质量和 MWM 逃逸潜伏期。所有数据均以均

值±标准差（x±s）表示。通过双向ANOVA分析从电生理测

试、高尔基染色和蛋白质印迹获得数据。当相互作用效应显

著时，进行Bonferroni事后比较。检验水准α=0.05。

2　结 果

2.1　NLY01改善HI引起的认知障碍

进行体质量测量、MWM 测试以评估 HI 和 NLY01 对空

间学习记忆的影响。三因素混合方差分析表明，HI[F=
5.147，P<0.05]和时间[F=88.231，P<0.01]对体质量有明显影

响。NLY01没有主要作用，HI、NLY01和时间之间也没有交

互作用。事后分析表明，与对照组相比，HI组小鼠体质量增

长显著减缓（P<0.05，图 1A）。在 MWM 中，三因素混合方差

分析显示，HI[F=14.621，P<0.01]、时间 [F=53.965，P<0.01]具
有显著影响，HI×NLY01×时间[F=2.803，P<0.05]具有明显交

互作用。NLY01或其他相互作用均无显著影响。事后分析

显示，与对照组相比，HI 组在第 3~5 天的逃逸潜伏期更高

（P<0.01），NLY01在第 4天和第 5天明显阻止了HI诱导的逃

逸潜伏期增加（第 4天P<0.01，第 5天P<0.05，图 1B）。此外，

4 组之间的游泳速度无统计学差异（P>0.05，图 1C）。双向

ANOVA分析表明，HI和NLY01[F=6.402，P<0.05；F=5.119，P<
0.05]具有明显影响，HI×NLY01[F=6.411，P<0.05]在初始训练

阶段和空间探索测试阶段对平台交叉具有明显交互作用。

HI×NLY01[F=6.926，P<0.05]之间存在明显交互作用，且在

这 2个阶段，HI和 NLY01[F=1.566，P>0.05；F=2.413，P>0.05]
之间未检测到统计学效应。事后分析表明，与对照组相比，

HI 组的平台交叉较低（P<0.01），目标象限的花费时间较少

（P<0.05），NLY01 阻止了 HI 导致的平台交叉次数减少（P<
0.01），目标象限占用率减少（P<0.01，图1D、E）。

A.NLY01治疗不影响HI引起的体质量减轻

D.空间探索测试阶段的平台交叉次数

注：a，与Con组相比，P < 0.05；b：与Con组相比，P < 0.01；c：与HI组相比，P < 0.05；d：与HI组
相比，P < 0.01

B.训练阶段每天确定逃逸潜伏期

E. NLY01阻止了空间探索测试阶段中HI引起

的平台交叉口数量和目标象限占用时间减少

C.NLY01和HI不影响MWM中的游泳速度

图1　NLY01改善HI引起的认知障碍
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2.2　NLY01改善HI诱导的突触可塑性损伤

在高尔基染色试验中，双向 ANOVA 显示 HI 和 NLY01
[F=38.584，P<0.01；F=20.889，P<0.01）对DG区域的突触密度

有显著影响，并且 HI×NLY01相互作用[F=17.296，P<0.01]。
事后分析表明，HI显著减少树突棘的数量（P<0.01），NLY01
显著阻止HI诱导的树突棘数量减少（P<0.01，图 2A、B）。在

图 2C、D中，双向方差分析表明，HI对GLP-1R[F=13.577，P<
0.01]、PSD95[F=7.768，P<0.05]和 SYP[F=8.117，P<0.05]的蛋

白含量有主要影响。NLY01主要影响 GLP-1R[F=6.303，P<
0.05]、PSD95[F=7.658，P<0.05]和 SYP[F=5.522，P<0.05]的蛋

白含量。在 GLP-1R、PSD95 和 SYP 的蛋白含量方面，HI 和
NLY01 之间没有显著的相互作用。事后分析表明，与对照

组相比，HI暴露显著降低GLP-1R、SYP和PSD95的水平（P<
0.01），NLY01 治疗显著阻止 HI 诱导的突触蛋白水平下降

（P<0.05）。

2.3　NLY01抑制HI诱导的小胶质细胞M1极化和炎症反应

HI增加小胶质细胞的数量，并促进小胶质细胞的激活，

其特征是观察到的肥大阿米巴状突起缩短和增厚。此外，在

HI 暴露后，小胶质细胞中 CD86 表达上调。与 HI 组相比，

HI+NLY01组的小胶质细胞拉长，并显示分枝状突起，CD86
表达较低（图 3A）。研究评估海马中 P65 和 P-P65（Ser536）
的蛋白含量。双向ANOVA分析表明，HI和NLY01[F=19.703，
P<0.01；F=7.671，P<0.05]显著影响 P-P65（Ser536）的蛋白含

量，HI 和 NLY01[F=6.122，P<0.05]之间存在显著交互作用。

事后分析表明，与对照组相比，HI暴露明显促进了 P65的磷

酸化（P<0.01），而 NLY01 有效阻止了 HI 诱导的 P-P65/P65
蛋白含量的增加（P<0.01，图 3B、C）。此外，还测定了NF-κB
相关炎症介质的蛋白含量。双向 ANOVA 分析表明，HI 对
iNOS[F=4.873，P<0.05]、COX2[F=14.101，P<0.01]、TNF-α[F=
18.850，P<0.01]和 IL-6[F=30.571，P<0.01]的蛋白含量有主要

A.四组树突棘的代表图（比例尺为2 µm）

C.从GLP-1R、PSD95和SYP的实验中获得的代表性结果

           注：a，与Con组相比，P<0.01；b：与HI组相比，P<0.05；c：与HI组相比，P<0.01

B. NLY01在高尔基染色中防止HI引起的脊柱密度损害

（分析了每组3只小鼠的10个树突棘）

D. NLY01阻止和HI诱导的GLP-1R、PSD95和SYP蛋白表达降低

图2　GLP-1R激动剂NLY01减轻HI诱导的突触可塑性损伤和GLP-1R表达的降低
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影响。 NLY01 主要影响 iNOS[F=8.776，P<0.01]、COX2[F=
9.341，P<0.01]、TNF-α[F=5.835，P<0.05]和 IL-6[F=9.667，P<
0.01]的蛋白含量。HI 和 NLY01 在 COX2[F=9.085，P<0.01]，
TNF-α[F=10.031，P<0.01]和 IL-6[F=10.893，P<0.01]的蛋白

含量上存在明显的交互作用。事后分析表明，与对照组相

比，HI组显著增加了 iNOS、COX2、TNF-α和 IL-6的水平（P<
0.01），NLY01 治疗阻止了炎症标记物水平的升高（P<0.01，
图3B、C）。

2.4　 GLP-1R 拮抗剂 Ex9-39 在 HI 模型中阻断 NLY01 的

作用

为了进一步证实 NLY01 的神经保护作用是通过激活

GLP-1R 产生的，研究在 HI 模型中使用了 GLP-1R 拮抗剂

Ex9-39。Ex9-39 在行为测试中明显阻断了神经保护作用

（图 4A~D，P<0.01）。此外，在 HI+NLY01 组中，Ex9-39 降低

了 GLP-1R、PSD95 和 SYP 水平，增加了炎症标记物的水平

（图4E、F）。

3　讨 论

本研究在 HI诱导的新生小鼠急性脑损伤模型

中评估了 GLP-1R 激动剂 NLY01的神经保护作用，

结果发现 NLY01 激活 GLP-1R 改善了学习记忆和

突触可塑性损伤。此外，NLY01有效抑制炎症途径

的激活和小胶质细胞M1极化。

HI 诱导的新生小鼠急性脑损伤是一种高度异

质性的疾病，其特征是行为症状多样[14]。本研究探

讨了 NLY01 在改善空间记忆缺陷方面的作用。结

果显示，NLY01对HI诱导的新生小鼠的记忆障碍有

明显的缓解作用，表明 NLY01激活 GLP-1R 可以改

善 HI引起的记忆损伤。突触可塑性是学习和记忆

的分子基础，在 HI 引起的神经损伤中起直接作

A.海马中 Iba1/CD86染色的代表性显微照片（比例尺为50 µm）

C. NLY01阻断P-P65和炎症标志物蛋白含量的增加（每组n=5）
注：a，与Con组相比，P < 0.01；b:与HI组相比，P < 0.01

B.从P65、P-P65、iNOS、COX2、TNF-ɑ和IL-6的实验中获得的代表性结果

图3　GLP-1R激动剂NLY01可防止HI诱导的小胶质细胞 M1极化和海马中炎症标志物免疫含量的增加
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用[15]。与本研究的行为研究结果类似，NLY01改善

了HI诱导的突触可塑性损伤。

尽管 NLY01 是一种特异性 GLP-1R 激动剂，但

它还有其他非靶向药理作用[7]。为了进一步证实

GLP-1R在NLY01治疗新生小鼠的急性脑损伤中的

作用，在 HI 模型中使用了 GLP-1R 特异性拮抗剂

Ex9-39。通过脑室注射给予Ex9-39，能够更好地评

估中枢 GLP-1R 的神经保护作用。Ex9-39 在行为

测试中显著阻断了NLY01的作用，表明NLY01的神

经保护作用与中枢GLP-1R有关。

大脑中炎症反应的激活是 HI发病机制中的关

键步骤。炎症因子的上调和小胶质细胞的激活会

导致突触可塑性和神经发生受损，从而导致HI的病

理生理学[16]。本研究检验了由 HI 诱导的 GLP-1R
受损作用可能导致海马炎症反应的假设。结果显

示，HI模型的磷酸化P65（Ser-536）水平和小胶质细

胞数量均显著增加。NF-κB 是调节炎症基因表达

的关键转录因子，NF-κB的过度激活会促进 IL-6和

TNF-α 等促炎因子的释放[17]。通过基因调控或药

物干预减少促炎因子的表达可以显著改善新生小

鼠的急性脑损伤行为。NF-κB 的激活还诱导炎症

介质的表达，例如 iNOS 和 COX2，它们是炎症细胞

因子产生的关键酶[18]。值得注意的是，NLY01阻止

了 NF-κB 及其下游途径的激活，这可能与 GLP-1R
的恢复水平有关。 NF- κB 的抑制可能是使用

NLY01 改善新生小鼠急性脑损伤行为受损的潜在

机制。

众所周知，小胶质细胞在 CNS 中发挥免疫作

用，是CNS健康发育和维持所必需的。小胶质细胞

是突触可塑性的关键调节因子，在生理条件下在塑

造和维持突触网络方面发挥重要作用[13]。M1 极化

小胶质细胞破坏抗氧化剂/氧化剂平衡以促进活性

A.训练阶段确定每天的逃生潜伏期

D. Ex9-39阻止HI+NLY01组中象限

占用时间的增加

注：a，与HI组相比，P < 0.01；b：与HI+NLY01组相比，P < 0.01
图4　GLP-1R拮抗剂Ex9-39在HI模型中阻断了NLY01的影响

B. NLY01和Ex9-39不会影响MWM中

的游泳速度

E.从GLP-1R、PSD95和SYP的实验中

获得的代表性结果

C. Ex9-39阻止HI+NLY01组中平台

交叉口数量的增加

F.从 iNOS、COX2、P-P65、P65、TNF-α和 IL-6
的实验中获得的代表性结果
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氧的产生，从而导致氧化应激[19]。高水平的活性氧

会导致四氢生物蝶呤氧化并破坏多巴胺、去甲肾上

腺素和血清素的合成[20]。此外，氧化应激会降低突

触相关蛋白的表达并损害突触功能。抑制 NF-κB
磷酸化可有效抑制小胶质细胞活化。免疫荧光结

果表明，NLY01抑制HI诱导的小胶质细胞M1极化。

Ex9-39 对 GLP-1R 功能的抑制阻断了 NLY01 的抗

炎和小胶质细胞抑制作用。

本研究中，NLY01 作为一种特异性 GLP-1R 激

动剂，可以改善由HI引起的认知障碍。NLY01通过

抑制炎症反应和小胶质细胞激活，改善了海马突触

可塑性的损伤。NF-κB 信号通路可能在 NLY01 神

经保护作用中发挥重要作用。这些结果表明，GLP-
1R可能是调节新生小鼠急性脑损伤炎症途径的功

能靶点，支持GLP-1R激动剂在HI诱导新生小鼠脑

损伤中的潜在治疗作用。
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