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Research progress of molecular mechanism of palmitic acid—induced

pancreatic B—cell dysfunction
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[Abstract] Type 2 diabetes mellitus (T2DM) is a common metabolic disease characterized by absolute or relative insulin deficiency
clinically. Pancreatic B—cells are the core of insulin secretion and blood glucose control. In recent years, researches have found that pal-
mitic acid can directly or indirectly induce pancreatic B—cell dysfunction, which is closely related to the occurrence and development
of T2DM. However, the specific mechanisms are complex and have not been fully elucidated. Therefore, exploring the molecular mecha-
nism of pancreatic 3—cell dysfunction induced by palmitic acid has always been an urgent need in clinical research. This article re-
views the research progress of the relationship between palmitic acid and pancreatic B—cells on molecular mechanisms related to oxida-
tive stress, endoplasmic reticulum stress, inflammatory response, autophagy, proliferation, dedifferentiation, and mitochondria—
associated endoplasmic reticulum membranes, and discusses new targets and ideas for improving pancreatic B—cell function clinically,
in order to provide references for further researches on the mechanism and clinical treatment of T2DM.
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requiring enzyme la, IRE1a) . X £ 555 % 11-1(X=box bind-
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II U TN GAE R T, I BERAE R 7 ot — A B B 4
T 930 B 22 (1 A PR 7, AT I — A~ A S RE A B , i )
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activated protein kinase , AMPK) K - 2 fb ) 4 35 25 32 Bl b
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regulated kinase 1/2, ERK1/2) 2358055 , T 3005 56 5% B 40
UL L T 0 2 A o v A R A IR -1 R B BN
71 ZP3022 S22 2 T2DM Sl PR e B B 41 a3 58 ) 47 %% 24
W, G2 AR AR R A 45155, Deng SF 251 & BHL 8 1 22 Ml i 1
B miR—6-136p Fl miR—5-149p F2 k540 EF T4 5 i 5t
D5 (EF-hand domain family member D5, EFHDS) , X} 2 R
BRI R AL B A /)N BB & B 20 M A 34 SRk AT W AR T i e fie
HEIRE R A3 ME o DRI AR R X I K B A0 M 1y 1 R B AL )
K o T2DM ARG B9 A Y7 12 B kAl (151 5) o
2.6 EAERFFMRE B MLk ok

TR 5 8 @ A ML A A kg 1 A AL 200 4 3 R R
0040, IR B AN A s D AT REE R N R, B
PRUR B — L8 JFUATE FC 2B B B 40 ML v e 2 A b ik W
SRR BEAG, AR A0 MR AT (0 i R 3Rk Ty, S 3B
TREE I wlk AMETER . T2DM R85 B 4 f 2540 fh AR 2
BEE R A SR THRERS o HE— B T AW 5E s L A
TR T LA R 5 B A D 25 40 A A 35 0 1 i) phe 2 IX Y HE 2
F19(SRY-box transcription factor 9,S0X9), EEY @k s ki
“F 1 (hairy and enhancer of split 1, HEST) F1-& % 41 i1 98 93 7
95 3 A 6] 22 4 (v—myc myelocytomatosis viral oncogene homo-
log, MY C) Iy 23K 5 1M LA BR 5 B 2 b S A A5 0 TR U
1 6.1 (NK6 homeobox 1, NKX6.1) . i ¥ Z 3 [H (insulin,
INS) | UM 5 2T 2 P 92 983 25 XL [R] R 40 A (v—maf musculoapo-
neurotic fibrosarcoma oncogene homologue A, MAFA) Fl
FOXO1 BB 2GR B0 XU AE I 5 A AR AR R T
T 29% 149 INS BHE 40 A NKX6.1 Fik Bk, 13 T 9] .1
FOMCRHIE . AR BRI S N9 5 20 M 7 A A 25 A Y [
2O IL-1B/3 %A A i -2 (cyclooxygenase—2, COX2) R 4iE

T IE B 15 R N SAE KT TR R D AR R
SR RAE RN AT RE R S5 T RS B 40 2540kt 72, LA
MBI P E RIS T RAEE STEH S p A L h &
FEHEEAER. Oshima M 454 EndoC—BH1 21 Jfd & {155 g
k4 B A 25100 F1 B (stearoyl-CoA desaturase, SCD) 32 ik J5 %%
Fr TR , X 24 i B 4 Y 25 40 AL i SR AU RS i
SCD 7EARHH R 5 5 B2 B AN 25 A R e 1) 1 <1 17] Bt
MPE . 5 A BN 0BT R T, N AR TAPP I3 8l A7 75 8
A~ SOX9 WA SR A G A mi o ARRRIRS1HE SOX9 A fE mRNA
FAE B 1R 3 F R R R, ISP BE TAPP 5 2535 n ,
— I T AR £ LY fE T2DM B T TAPP AR
Jige & PO AR M P SE D RE B 11 BER . SOXO TR AL X A
RIS T TAPP (197 A R B i B 40 25 73 FE A SOX9 2%
I ZWAUR T IAPP RIK T m A WD B . 25 BRI, B
0 M Dy RE T T B 2540 AR AR R R X B AN i T AR EAE
FARLHIZ— (&l 6).
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RS IR YA BRI Ca? (5 515 T A IR 15 D0 Ik A5 % ik
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BEVE Y 2 1 75 (glucose—regulated protein 75, GRP75)/Z& ik
L H (voltage—dependent anion channel, VDAC)JE il fa € &
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