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Research advances in the effect of exosomes and their microBNAs

on cerebral ischemia—reperfusion injury
Zhou Guilin,Bai Wenya,Shao Jianlin
(Department of Anesthesiology , The First Affiliated Hospital of Kunming Medical University )
[ Abstract] Cerebral ischemia—reperfusion injury (CIRI) is brain tissue damage secondary to ischemic stroke after blood flow recanali-
zation and has extremely high fatality and disability rates. Exosomes are microvesicles with a double-layer lipid membrane structure
released from cells into the extracellular space and play the roles of information transmission , targeted transportation , and regulation of
various pathological and physiological functions through the membrane proteins, cytoplasmic proteins, and genetic materials they carry.
Most cells inside the body can secrete exosomes, and exosomes and the microRNAs they carry play a positive role in alleviating neuro-
logical deficits and promoting cerebral angiogenesis after CIRI. Further studies on the protective effect of exosomes and their microR-
NAs on CIRI and its mechanism can provide new ideas for the bench—to—bedside translation of exosomes and the treatment of CIRI.
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