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基于社交信息扩散的网络传染病传播防控研究

王 伟，李文杰，李佳晨

（重庆医科大学公共卫生学院，重庆 400016）

【摘 要】在自媒体时代，大规模流行病暴发的同时，疫情相关信息也在各种社交平台上扩散。因此，评估社交网络上信息扩散

对疫情防控的影响，进一步合理引导网络舆论，对疫情防控具有重要现实经济意义。近年来，揭示和理解社交信息扩散对流行

病传播及其防控策略的影响成为网络科学领域的研究热点。本文重点回顾单个网络、双层网络和高阶网络上的信息扩散对传

染病传播防控影响的最新进展，及其挑战和未来潜在研究。
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Prevention and control strategy for network infectious disease spreading 
based on social information diffusion

Wang　Wei，Li　Wenjie，Li　Jiachen

（School of Public Health，Chongqing Medical University）
【Abstract】In the era of social media，epidemic-related information is spreading across various social platforms along with the out⁃
break of large-scale pandemics. Therefore，assessing the impact of information diffusion on epidemic prevention and control in social 
networks and further guiding public opinion on the network reasonably have significant practical and economic importance for epidemic 
prevention and control. In recent years，revealing and understanding the influence of social information diffusion on the spread of 
epidemics and related prevention and control strategies have become a research hotspot in the field of network science. This article 
reviews the latest advances in the influence of information diffusion on the prevention and control of infectious disease transmission 
within single networks，double-layer networks，and higher-order networks，as well as related challenges and potential studies in the 
future.
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新型冠状病毒肺炎全球蔓延至今，超过7.5亿人被感染，

死亡 680余万人，大规模传染病防控策略是研究公共卫生安

全的重点，是维系国家安全、社会稳定发展的前提[1]。在疫

情暴发期间，与之相关的舆情也随之在各种社交平台上扩

散，对人们的出行、生活，以及疫情防控有着重大影响。一方

面，政府可以通过社交网络（如微信公众号、微博等）方式来

传递疫情现状，以及疫情防控措施，从而快速遏制疫情大规

模蔓延。另一方面，用户之间可以通过社交网络来交互信息

（如疫情防控政策、某地疫情状况、医疗资源请求等），从而影

响他们的线下活动轨迹。因此，厘清社交网络在疫情防控中

的作用，并构建合理的数学模型来评估其效能，是极为重要

的基础研究课题，更是控制大规模流行病传播的关键。

评估疫情防控效果最为重要的一步是构建合理的流行

病传播模型。在构建模型时，需要综合考虑流行病演化规

律、传播途径、信息扩散等因素的影响。现有实证分析表明，

大多数流行病传播途径是通过线下物理接触。例如，新冠病

毒患者打喷嚏、流鼻涕、咳嗽、说话出的飞沫以及呼出的气

体，近距离接触到其他健康人员，使其吸入到气道内而导致

感染。因此，流行病传播途径可以用复杂网络进行描述，其

节点表示个体，连边表示个体之间的各种近距离接触模式。

在 2001 年，Pastor-Satorras R 等[2]首次构建了复杂网络

上的流行病传播模型，揭示了疫情长期存在于人类的主要原
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因在于人类接触网络的无标度特性，这为疫情防控中的目标

人群免疫提供了理论支撑。对于全球流行病暴发，美国东北

大学 Colizza V 等[3]提出了结构种群模型（Meta-Population 
Model），发现人口的快速流动是全球疫情暴发的关键因素。

因此，减少出行是非药物疫情防控的有效措施。

在自媒体时代，大规模流行病暴发的同时，关于流行病

的信息也在各种社交平台上扩散。一方面，关于流行病传播

的信息有助于让易感者采取一些措施（如戴口罩、减少出行）

等来保护自己，从而抑制大规模流行病传播。Funk S等[4]针

对信息传播对大规模流行病暴发的影响构建了数学模型，发

现信息和流行病都在高集群系数网络上传播时，流行病更容

易被控制。

因此，评估社交网络上的信息扩散对疫情防控的影响，

进一步合理引导网络舆论，对疫情防控具有重要的现实经济

意义。鉴于此，本文将阐述国内外基于信息扩散的传染病防

控策略的最新研究进展。

1　网络流行病传播建模及防控措施

流行病传播研究具有悠久的历史。早在1760年，Bernoulli 
D等[5]就提出了第一个天花流行病传播模型，它标志着传播

动力学的诞生。针对不同的流行病类型，学者们提出了一些

经典的仓室模型，包括易感态—感染态（SI）模型、易感态—

感染态—恢复态（SIR）模型和易感态—感染态—易感态

（SIS）模型等。这些模型至今仍然在使用，且不仅用于描述

传染性疾病。然而，20 世纪的相关工作大都忽略了接触模

式和传播途径的重要性及其影响。直到复杂网络理论诞生

后，学者们才真正意识到传播途径的重要性。在 2001 年，

Pastor-Satorras R和Vespignani A[6]首次利用复杂网络描述传

播途径，进而研究它对传播动力学的影响，引起了海内外学

者的广泛关注，标志着复杂网络传播动力学的诞生。

复杂网络是一种由大量相互连接的节点和连边组成的

网络结构，它在各种领域中都有广泛的应用，包括社交网络、

生物网络、信息网络等。复杂网络可以通过数学方法进行描

述，假设一个网络G = (V,E )，其中V = v1…vn 是由 n个节点组

成的非空集合，E表示节点之间连边的集合。节点代表个人

或组织，连边表示节点之间任何可能的人际接触或关系。复

杂网络理论为研究复杂交互系统的结构和动力学提供了很

好的框架，能够很好地展示真实社会系统的本质特点，具备

良好的数学性能，能够进行严密的数学计算。

复杂网络理论允许通过数学方法构建传染病传播模型，

并通过计算机模拟病毒在个体之间传播的动力学过程。系

统中节点对应于个体，假设病毒可通过节点之间的连边进行

传播。易感态—感染态—恢复态（SIR）模型和易感态—感染

态—易感态（SIS）模型是传染病传播的经典模型。SIR模型

常用于描述非可逆性传染病传播，SIS模型常用于描述可逆

性传染病传播。SIR模型中节点有 3种可能的存在状态，易

感态节点 S可通过与感染态节点 I之间的连边以一定概率 β

被感染，感染态节点会同时以概率 μ恢复为R态节点并不再

参与传播过程，动力学过程可描述为：S →β

I →μ

R。SIS模型

中节点只存在两种状态，其中感染态节点恢复后可继续参与

传播过程，动力学过程可描述为：S →β

I →μ

S。研究者们基于

这两个传播模型对复杂网络上的传染病传播展开了大量研

究，并取得了显著的成果。

Pastor-Satorras R 和 Vespignani A[6]基于 SIS 模型探索了

无标度网络上的传染病传播并对流行病阈值进行求解。他

们基于异质平均场方法描述了度为 k 的感染态节点密度 ρk

随时间 t的演化方程为

∂ t ρk( t) = -ρk( t) + λk [1 - ρk( t) ] Θ(λ) （1）
该式考虑了一个度为 k的节点处于易感状态 [1 - ρk( t) ]

且被感染的概率，λ表示有效传播率，Θ (λ) 表示任意一条连

边均指向感染节点的概率。当∂ t ρk( t) = 0时，得到稳态密度

ρk = kλΘ(λ)
1 + kλΘ(λ) （2）

节点连通性越高，被感染的概率越大。这种不均匀性需

要考虑到 Θ (λ) 的计算中。事实上，一条连边指向具有 s 条

连边的节点的概率正比于 sP ( s)。即随机选择的一条连边更

有可能连接到具有高连通性的节点，得到

Θ (λ) = ∑k

kP (k ) ρk∑s
sP ( s) （3）

最后可以通过评估系统中感染态节点的平均密度来计算

序参量。在该模型中，存在一个连通性分布P (k) = 2m2 /k-3，k

近似为连续变量。此时，对等式（3）进行积分可以在λ的最低

阶写为Θ (λ) = e-1/mλ /λm。对ρk求平均后最终得到

ρ ≃ 2e-1/mλ （4）
结果表明该模型中不存在流行病阈值或临界点，这与他

们的计算机数值模拟结果一致，如图1所示。

图 1　不同网络规模下稳态密度 ρ 随 1/λ 的演化[6]
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自此以后，众多学者利用计算机模拟和理论分析方法，

来探究传播途径（即复杂网络结构）对传播范围[7]、暴发阈

值[8]、传播速率[9]和可变性[10]等的影响。在研究网络结构对

传播动力学的影响时，主要关注网络的宏观结构、中尺度结

构和微观结构所带来的影响。在宏观层面，学者们主要研究

度分布和权重分布的影响，发现当度分布异质性很强时，暴

发阈值为零[6]，但权重分布异质性增大暴发阈值[7]。在中尺

度层面，学者们关注度关联、集群系数和社区结构所带来的

影响，发现正关联[11]、高集群系数[12]、强社区结构[13] 更容易导

致疾病暴发，而负关联抑制疾病暴发[11]。在微观层面上，学

者们发现大度节点更容易被感染，高权重边更利于疾病传

递[14]。最近，学者们还研究了多层网络[15]、时序网络[16]和空

间网络[17]结构对传播动力学的影响。Vazquez A等[18]分析了

阵发性对疾病传播的影响，发现它导致系统在很长一段时间

内都存在疾病。利用计算机模拟，Cui AX等[19]发现恢复时间

异质性在初期利于传播，而后期抑制传播。基于更新过程，

Jo HH等[20]发现当网络规模无穷大时，阵发性导致传播后期

速度减缓。此外，记忆性还体现在人类行为的空间记忆，即

个体在一段时间后返回到他之前待过的地方。结构种群模

型能很好地刻画空间记忆对疾病传播的影响[21]。用节点表

示城市，连边表示城市间的交通。每个节点内有一定数量的

人群，每个时刻人群会通过交通工具旅行。基于结构种群模

型，学者们发现返回率对疾病传播范围有显著影响[22]。最

近，Brockmann D 等[23]和 Iannelli F 等[24]发现城市间的有效距

离是导致全球流行病暴发的重要机制。研究指出疾病蔓延

到某个城市的时间，并非取决于它与初始传播源的绝对距

离，而是取决于两地之间的有效距离，形成同心圆。利用这

一传播特性，准确地识别了 2009年H1N1和 2003年 SARS流

行病的传播源，为预测和控制全球流行病传播提供了一些新

思路。华东师范大学刘宗华教授团队对人类的目标旅游、旅

途中感染等问题进行了探讨，发现目标旅游会促进传播，减

少出行是防控大规模流行病暴发的有效手段[25]。

鉴于真实接触网络结构具有很强的异质性，学者们提出

了一些经典的免疫策略，其中度分布异质网络的有效免疫策

略包括目标免疫策略[26-27]、熟人免疫策略[28]和基于社会传播

的免疫策略[29]等。对于权重网络，Deijfen M[30]提出了一个改

进后的熟人免疫策略：随机选择一些节点，偏好免疫这些节

点邻居中高权重边。他发现这一策略比经典的熟人免疫策

略更为有效。此外，偏好免疫高强度的节点也是一个有效的

免疫策略[31]。在新冠病毒暴发期间，我国政府采取了强有力

的防控措施（如交通管制和居家隔离），取得了非常好的成

效[32-35]。

2　基于信息扩散的防控策略

当流行病蔓延时，与之相关的信息可以通过微信、微博、

新闻等各种社交平台传播。一旦健康个体获知这些信息时，

将采取一系列简单有效的措施来保护自己，从而有效地抑制

流行病暴发。揭示信息扩散对流行病防控的影响，引起了学

者们的广泛关注[36]。此时，学者们往往更关注于健康个体的

非药物防控措施（如戴口罩、勤洗手、少出门等）对流行病传

播影响，通常流行病基本再生数减少，传播范围降低。杭州

师范大学张子柯教授团队[37]通过分析微博信息扩散数据和

流感数据，也发现了类似的结论。通过构建数学模型，发现

社交网络上的信息传播可有效地控制传播范围[38]。

2.1　单层网络

Funk S等[4]假设信息和疾病在同一个社交网络上传播，

人们对附近疾病暴发的认知是如何影响其行为，以及这种行

为如何通过数学模型与疾病传播相关联。“流言”等信息的传

播会影响人们的行为，建立传播传染病认知的网络模型，用

Xi 代表每个独立个体传播信息的次序，即 X0 作为第一手信

息来源，Xi 作为第 i 手信息来源，认知会在信息传播 ( Xi +
Xj > ( )i + 1 → Xi + Xi + 1 )的过程中逐渐消散 ( Xi → Xi + 1 )，信息最

终会在群体传播中消失。状态转移过程及参数如表1所示。

将信息传播模型与 SIR模型相结合，得到了一组描述这

2个过程相互作用的差分方程

dS
dt = -β

' S
N I （5）

dI
dt = β

' S
N I - γI （6）

dR
dt = γI （7）
为了捕捉个人行为的影响，使疾病的传播取决于给易感

者的可用信息质量，即处于 Si 状态的个体敏感性随着 i的增

加而增加，根据此模型，得到暴发阈值R0 = β'( ρ, { Si ( t0 ) }) /γ，如
果从完全不知情的易感人群开始，与传统 SIR 模型相比，疾

病的暴发阈值不会发生改变，认知只能通过信息生成过程产

生，并且与参数ω和感染者 I的数量相关。只有当暴发开始

时已经存在一定程度的认知时才会使阈值降低。

由于真实社交网络中人群混合不完全是随机的，接下来

Funk S 等[4]在随机混合的群体水平基础上构建了基于个人

的网络模型，人口中的每个成员都嵌入到一个接触网络中，

并且只能通过该网络的连接来感染其他人，将原本的 R̂0 =

表 1　模型转化过程及参数表示

感染

恢复

信息传输

信息消散

信息迭代

转化

Si + Ij → Ii + Ij

Ii → Ri

Xi + Xj > (i + 1) → Xi + Xi + 1
Xi → Xi + 1

Ii → I0

速率

(1 - ρi ) β̂

γ

α̂

λ

ϖ
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TDk = T ( k̄ - 1 + Var (k )
k̄

)，感染发生的概率T是独立相同的，

有T = β̂/ ( β̂ + γ )，转变为 R̂'0 = T'( t0 ) Dk = R̂0 - (T - T'( t0 ) ) Dk，

T'( t) = ∑i = 1
∞ pi ( t )Ti，Ti = β̂ (1 - ρi )

β̂ ( )1 - ρi + γ
，在疾病接触随机混

合的限制下与平均场理论所得结果一致。若认知像疾病一

样不仅存在于全球范围，并且在疫情暴发的初始阶段就在局

部进行传播，情况会完全不同，阈值由信息参数决定，即使

R̂0 > 1，也可将 R̂'0降至 R̂'0 = 1，使疾病不会发展成流行病。

考虑到信息传播的质量随着传递而逐渐下降的特性，

Funk S 等[4]又分析了不同的社交网络结构（如完全重叠、完

全不重叠、局部重叠）如何影响认知的传播和疫情的扩散，如

图 2所示。指出了尽管不会改变流行病的阈值，意识传播对

疫情规模的降低作用，而当意识传播在疫情附近发生并且感

染率低于某个阈值时，可完全阻止疾病传播，还强调了社交

网络和信息传播网络对局部意识传播影响的重要性，尤其是

在网络具有高度聚集性的情况下，对认知传播的有效性和疫

情控制有重要影响。

华东师范大学刘宗华教授团队[39]发现，基于信息扩散的

流行病防控措施既可能局部暴发，也可能全局暴发，与随机

免疫、度免疫和介数免疫策略截然不同。大众媒体上的信息

传播对流行病的影响也有一些研究，发现可以有效地减小传

播范围[40-41]。

2.2　多层网络

真正的复杂系统往往是由相互关联的多层网络组成的，

信息和传染病往往在不同的网络中传播。因此，信息—疾病

耦合传播可视为多层网络上的传播模型。Granell C 等[29]在

多层网络的基础上分析了流行病和信息传播 2个过程之间

的相互关系，2层网络分别表示物理接触传播疾病（SIS）和社

会接触传播信息（UAU），一个人可以处于 3种不同的状态：

不知情且易感（US）、知情且易感（AS）以及知情并感染（AS）。

耦合动力学微分方程为：

ri( t) = ∏j
(1 - aji pA

j ( t )λ) （8）
qA

i ( t) = ∏j
(1 - bji pAI

j ( t ) βA ) （9）
qU

i ( t) = ∏j
(1 - bji pAI

j ( t ) βU ) （10）
其中 pA

j = pAI
j + pAS

j ，使用微观马尔科夫链方法（MMCA）得到：

pUS
i ( t + 1) = pAI

i ( t) δμ + pUS
i ( t) ri( t) qU

i ( t) + pAS
i δqU

i ( t) （11）
pAS

i ( t + 1) = pAI
i ( t) (1 - δ ) μ + pUS

i (1 - ri( t) )qA
i ( t) +

pAS
i ( t ) (1 - δ )qA

i ( t) （12）
pAI

i ( t + 1) = pAI
i ( t) (1 - μ ) + pUS

i [ (1 - ri( t) ) (1 - qA
i ( t) ) +

ri( t) (1 - qU
i ( t) ) ] + pAS

i ( t ) [ δ (1 - qU
i ( t) ) + (1 -

δ ) (1 - qA
i ( t) ) ] （13）

得到阈值 β U
c = μ

Λmax (H )，λc = δ
Λmax ( A)，（λc, βc ) 是疾病

开始流行的临界点，这个点可能是一个三临界点，即使在稳

态下只有两个不同的阶段，对应于经典的 SIS，在瞬态中，对

于某些 β值，存在初始放大感染节点的数量，随着意识水平

提高，感染水平回落至消失。对于 λ > λc，流行病的暴发取

决于信息层的结构和认知传播的动态过程。通过理论分析

和蒙特卡洛模拟，系统存在一个区域（阴影部分）包含元临界

点，这个区域对应于[0,1/Λmax ( A) ] × [0,1/Λmax (B ) ]所界定的

范围。从图 3中可以看出，最初阈值并不依赖于认知，在某

个特定点λc，即元临界点，疫情被延迟和控制。增加信息传

播概率和信息网络的异质性，有利于抑制流行病传播。

信息往往具有一定的风险性和不可靠性[42]，因此可用

Watts DJ 阈值模型[43]描述信息传播。Guo QT 等[44]发现流行

病暴发阈值呈现出突然下降，取决于Watts阈值模型中节点

阈值大小。Pan YH和Yan ZJ[45]考虑信息有 3种不同来源，包

括接触信息、流行病的全局和局部传播范围信息。当考虑接

触信息时，流行病暴发阈值增加；然而，当考虑流行病传播范

围信息时，流行病暴发阈值不变。Sagar V 等[46]研究了信息

图 2　晶格网络上信息传播对疾病传播影响

图 3　不同恢复参数下 βc 与 λ 的关系
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和流行病传播概率随时间变化的情形，发现系统可能出现震

荡态。Wang HJ等[47]发现存在一个最优时间尺度，使得流行

病传播范围最小。Moreno Y 等[11]发现基于信息扩散的流行

病防控措施比限制出行更有效。

Zhang HF等[40]聚焦传播过程中的两个基本量传播暴发

阈值和最终感染率，研究物理接触和信息接触两种类型的传

播动态之间的不对称相互作用，每种传播动态都发生在各自

层中。构建具有层间耦合关系的双层网络模型，每层都具有

独特的内部结构，疾病和信息的传播动态过程是不对称地相

互耦合。在传播层（A层），采用经典 SIR模型来描述疾病信

息的传播，若 B 层的对应节点被感染，A 层节点就会获得有

关疾病的信息。B 层的传播动态通过 SIRV 模型来描述，引

入疫苗接种的状态（V），如果 B层的节点处于易感状态而 A
层对应节点处于感染状态，则 B 层节点将以概率 p 接种疫

苗，即可以通过传播层中的信息来抑制接触层的疾病传播。

Zhang HF等[40]采用异质平均场理论得到这个双层网络的动

力学方程：

dsA
kA
( )t

dt = -sA
kA
( t) éëβA kAΘA( t) + βBΘB( t)∑kB

kB PB( )kB
ù
û

（14）
dρA

kA
( )t

dt = sA
kA
( t) éëβA kAΘA( t) + βBΘB( t)∑kB

kB PB( )kB
ù
û -

ρA
kA
( t) （15）

drA
kA
( )t

dt = ρA
kA
( t) （16）

dsB
kB
( )t

dt = -sB
kB
( t) βB kBΘB( t) - pβAΘA( t)∑kA

sA
kA
( t) kA PA( )kA

（17）
dρB

kB
( )t

dt = sB
kB
( t) βB kBΘB( t) - ρB

kB
( t) （18）

drB
kB
( )t

dt = ρB
kB
( t) （19）

dvB
kB
( )t

dt = pβAΘA( t)∑kA
sA

kA
( t) kA PA( )kA （20）

由于疾病和信息传播过程之间复杂的相互作用，无法计

算出准确的阈值，Wang HF等[40]采用线性近似的方法得到A
层信息传播的暴发阈值，当 βB ≤ βBu 时，βAc = βAu，A层孤立地

进行信息传播，不受 B 层传播动态的影响。当 βB > βBu 时，

βAc = 0，疫情的暴发会使 A 层大量节点被信息“感染”，使 A
层无法形成有效传播，信息暴发对 B 层的疫情传播影响不

大，因此当 βA ≤ βAu 时，有 βBc ≈ βBu。当 βA > βAu 时，B 层疫情

传播受到信息传播的抑制，A层的知情节点倾向于让B层对

应节点接种疫苗，疾病传播和疫苗接种可以被视为一对在B
层传播的相互竞争的“疾病”。从图 4A可以看出，重新匹配

率 q对A层的暴发阈值 βAc影响很小，具有相同度分布的ER-
ER 网络的阈值更大。图 4B 显示，较强的层间相关性可以

增加 B 层度较大的节点被接种的概率，从而有效防止疫情

的暴发。

Wang W等[38]研究了基于信息扩散来防控 SIR流行病传

播，发现增加信息传播速率、信息传播网络的异质性和层间

度关联都有利于抑制流行病传播。当考虑免疫代价时，发现

信息扩散过快或者过慢，均不利于抑制流行病传播[40]。Liu 
QH等[48]假设个体采取免疫依赖于他获知的信息多少，发现

信息扩散概率存在一个最优值，使得免疫和感染代价最低。

2.3　高阶网络

大多数复杂网络仅限于描述两个体之间的成对交互，然

而，现实世界系统的典型特征通常涉及 3个或更多个体的多

体交互。使用简单网络来描述此类交互可能会导致信息丢

失或其他缺陷，因此，研究者们提出了更先进的高阶网络来描

述社会、生物和人工系统等真实组织，例如超图和单纯复型。

Li WY 等[49]基于单纯复型描述的高阶网络研究了信息

扩散与 SIS 流行病传播的共同演化。他们在单纯复型上提

出了一个易感态-感染态-易感态-不知情-知情-不知情

（SIS-UAU）模型，其中流行病 a 的传播遵循 SIS 模型，信息 b

的扩散遵循 UAU 模型。当疫情在社会上蔓延时，疫情信息

会通过微信、微博等社交平台扩散。疫情信息的扩散可能会

让更多人意识到疫情的危险，从而加强自我防护。即疫情促

进信息扩散，反之，信息扩散则抑制疫情传播。模型中节点

有 4种可能的存在状态：不知情且易感态（SU）、知情且易感

态（SA）、不知情且感染态（IU）和知情且感染态（IA）。SU态

A. 不同网络结构下 βB 对 βAC 的影响

B. 不同网络结构下 βA 对 βBC 的影响

图 4　不同网络结构对阈值的影响
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节点可能被感染且对疫情信息不知情，同样，可以知晓 SA、

IU和 IA状态的含义。节点 j可通过概率 βb 将信息扩散到处

于 SU 状态的邻居节点 i，节点 i知晓信息后转变为 SA 状态。

当邻居节点 i处于 IU态时，节点 j可通过更大的概率 β'b ≫ βb

将信息扩散到节点 i使其转变为 IA状态，这是由于节点 i被

感染后将会更容易接受疫情信息。此外，当处于状态 SU
（IU）的节点 i同时与 2个均知晓疫情信息的邻居节点 j和 k交

互时，节点 j和 k可通过 2-单型以更大的概率 β Δ
b（β 'Δ

b ）将信息

扩散到节点 i使其转变为 SA（IA）状态，β 'Δ
b ≫ β Δ

b 。对于流行

病a的传播，感染态节点（IU或 IA）只能将流行病传播给易感

且不知情邻居，而不能传播给易感且知情邻居。当邻居节点

i和 k均处于感染态时，流行病可通过 2-单型以概率 β Δ
a 传播

到处于 SU状态的节点，使其转变为 IU状态。他们通过微观

马尔科夫链法对该动力学过程进行了描述：

[ pIU ]t + 1
i = [ pSU ]t

i (1 - U t
i [U ∆ )t

i ) fIU + [ pIU ]t
i (1 -

μa ) [ U'b ]t
i [ U 'Δ

b ]t
i +  [ pIA ]t

i μb(1 - μa ) （21）
[ pSA ]t + 1

i = [ pSU ]t
i (1 - U t

i [U ∆ )t
i ) fSA + [ pIU ]t

i μa (1 -
[ U'b ]t

i[U 'Δ
b ]t

i ) + [ pSA ]t
i (1 - μb ) [ U'a ]t

i [ U 'Δ
a ]t

i +
[ pIA ]t

i μa(1 - μb ) （22）

[ pIA ]t + 1
i = [ pIU ]t

i (1 - μa ) (1 - [ U'b ]t
i[U 'Δ

b ]t
i ) + [ pIA ]t

i(1 -
μa ) (1 - μb ) （23）

通过大量数值模拟，结果表明高阶交互作用在影响流行

病规模方面表现出“双刃剑”作用。信息暴发之前，高阶交互

使个体更容易受到流行病的影响；信息暴发之后，高阶交互

极大激发了信息扩散对疫情的抑制作用，提高了个体的防疫

意识，使得疫情难以蔓延，如图 5所示。此外，通过对传统简

单网络上的传播进行数值模拟，发现流行病传播和信息扩散

均存在一个暴发阈值。

最近，越来越多的学者关注到高阶网络上信息扩散与流

行病传播的相互作用。Wang HA 等[50]还将时序交互作用纳

入到流行病传播中，在高阶网络上提出了一个 sUAU-tSIS模

型，基于微观马尔科夫链理论进行了分析，并得到暴发阈值

βc = Nμ

mΛmax (H )。实验结果表明，集体交互产生的强化效应

促进了信息扩散，从而抑制了疫情传播。Liu LJ 等[51]将参

考文献[52]中的模型转置到信息与流行病共同演化的场景，

假设信息扩散发生在 2-单型层，而流行病传播则通过成

A. λb = 0 时 I p 和 pA 随 λa 的演化

C. λb = 0.7 时 pI 和 pA 随 λa 的演化

E. λb = 1 时 pI 和 pA 随 λa 的演化

B. λb = 0.6 时 pI 和 pA 随 λa 的演化

D. λb = 0.72 时 pI 和 pA 随 λa 的演化

F. λb = 2 时 pI 和 pA 随 λa 的变化

图 5　当信息扩散强度 λb 固定在不同水平时，流行病稳态感染率 pI 和信息稳态扩散率 pA 随流行病感染强度 λa 的演化
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对交互发生。通过微观马尔科夫链方法确定暴发阈值 βc =
μ

Λmax
(ϕ )，并发现成对交互层中的个体异质性可以提高暴发

阈值。实验结果进一步证明，单纯型中的强化效应可以通过

促进信息扩散来抑制疫情传播。

3　结 语

本综述全面讨论了网络传染病传播建模及防控策略研

究进展，重点关注信息扩散对防控策略的影响。本研究追溯

了复杂网络传染病传播建模的起源，研究主要基于 SIS 和

SIR模型展开，结合平均场和微观马尔科夫链等理论分析方

法和数值模拟来探究网络结构对传播范围、暴发阈值等的影

响。鉴于真实接触网络结构的强异质性，研究者们继而提出

了一些经典防控策略，如目标免疫策略和熟人免疫策略等。

目前，越来越多的研究表明社交网络上信息扩散对于传染病

防控策略具有重要影响，分别从单层网络、多层网络和高阶

网络总结了相关研究。单层网络上基于信息扩散的传染病

传播既可能局部暴发，也可能全局暴发。双层网络上信息传

播网络异质性与层间度关联均有利于抑制传染病传播。高

阶网络上相关研究表明高阶交互产生的强化效应可以通过

促进信息扩散来抑制疫情传播。
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