BERERKFZR 2024 £55 49 5 2 #5 (Journal of Chongging Medical University 2024.Vol.49 No.2 ) — 109 —

LR DOI:10.13406/j.cnki.cyxh.003428

BIUB S 53 Wi 21 1K 432 1 R BIL R F 5k o

(FERERI2EB R BB L 1 i 5 AR Py e 2 J DO 3 0 S0 g0 28 FE T i A i 9 1 s AR e 2 T 7
TSR K 401147)

(4 Z AT R —Fh i R MAL ISR 5 DR A A AE T, e A R BRI Y s e e 2k . AR T R BUL N )

e 2 b 17 S AR JAE , DR A SR R i A e Sl v R EE AR . A0 KA 7 R 2R A LI B |, LRI

PO RV T R T ok A AN g o R AR, 3 A B T AR M A SRS S AT (EL e BE LB, ) 2 AR

Efé QAL S, DT A 2 2L 2B A5 R SR AE B, DR IH AR SR 2 4 1 84 705 BIL ) B2 AU 5 Wi 24 4 1 0 RAA Ll 2
FESCHR 1B e £33 , 5 e E 58 f TR B4 Bk s

[%iﬁﬂléﬁﬂﬂﬁt BB T3 5 FEIE 7 5 hr A J 5 AR 3Y DI

(HESZES]R318.01;0255 [ZEfAR RG] A (e B #3]2023-08-25

Research progress on the mechanisms of mechanical stress affecting

cell pyroptosis
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[ Abstract ] Pyroptosis is a type of cell death that culminates in the loss of membrane integrity as a result of the activation of inflamma-
some sensors. Pyroptosis plays an important role in the development and progression of inflammation and diseases because of a leakage
of the cellular contents into the extracellular space. Cells live in a complex mechanical environment and are subject to various mechani-
cal stimuli originating from the microenvironment and external forces. Appropriate mechanical stress contributes to the normal physi-
ological process of cells, but excessive mechanical stress can activate stress signaling pathways, such as death pathways, resulting in
cell tissue damage and inflammation. In this paper, we review the literature on the molecular mechanisms of cell pyroptosis and how
mechanical stress affects cell pyroptosis , aiming to provide a basis for future research on pyroptosis—related diseases.
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