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[ Abstract] Objective : To observe the changes in scaffolding protein Homer protein homolog 1b and 1¢(Homerlb/c) ,inositol 1,4, 5-
trisphosphate receptor (IP3R) , metabotropic glutamate receptor 5 (mGIuR5) , sh3 and multiple ankyrin repeat domains 3 (Shank3)
protein—related complexes, and common amino acids in the prefrontal cortex of CTNND2”" mice with autism, and to investigate the key
targets that may be involved in the development of the disease in mice with autism. Methods : Western blot(WB) was used to measure
the changes in the protein expression levels of Homerlb/c, postsynaptic density—95(PSD-95) , synaptophysin(SYP) ,and vesicular glu-
tamate transporter 1 (vGluT1) in the prefrontal cortex of CTNND2™" mice with autism ; immunofluorescent (IF) staining was used to
investigate the expression and colocalization of Homerlb/c with TP3R, mGluRS5, or Shank3 proteins ; co—immunoprecipitation ( CO—

IP) was used to observe the binding of Homerlb/c to IP3R, mGluR5 or Shank3; liquid chromatography (LC) was used to analyze

the changes in common amino acids in the prefrontal cortex of
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HEWE. AT A2 ALE ERAD (%5 cstc202ljeyj— (P=0.003) ,PSD-95(P=0.003) , and SYP(P=0.046) in the prefron-

mice. Results: Compared with the control group, the CTNND2™”"

model mice had significant reductions in the expression of Homer1b/c

msxmX0065) . tal cortex and a significant reduction in the binding of Homer1b/c to
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(2024-04-22) changes in the expression levels of the common excitatory neu-
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rotransmitter glutamate and the inhibitory neurotransmitter y—aminobutyric acid in the prefrontal cortex (P=0.366 and 0.355) , while

there were significant increases in the expression levels of histidine (P=0.036) and tyrosine (P=0.030). Conclusion : There is low ex-

pression of Homerlb/c protein in the CTNND2™" mouse model of autism, and there is a reduction in the formation of Homerlb/c com-

plexes with IP3R, Shank3, and mGluRS5 proteins. It is speculated that low—expression Homer1b/c may be a key target for abnormal syn-

aptic development in autism.
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