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脑肿瘤三维可视化模型自动重建技术的开发及临床应用

刘培龙，蒋 理，谢延风，詹 彦，邓 博，徐伟竣，石全红

（重庆医科大学附属第一医院神经外科，重庆　400042）

【摘 要】目的：研究和开发一种基于头颅多模态核磁共振成像（magnetic resonance imaging，MRI）的影像学数据，自动重建常见

脑肿瘤及其周围重要结构的三维可视化模型，并验证其效能及临床适用性。方法：收集常见脑肿瘤头颅多模态核磁共振影像

数据，并将其分为训练集、验证集和临床测试集。在训练及验证中，通过 3D 深度卷积神经网络的算法训练系统自动分割并

重建出脑肿瘤及周围结构的能力；在临床测试集中分别用系统及人工手动的方法完成重建，比较本系统自动重建与手动重

建之间的重建效率及图像质量。结果：在完成 1例肿瘤及周围结构一体化模型重建的时间花费上面，系统用时由人工用时的

（5 442±623） s减少至（657±78） s，差异有统计学意义（t=27.530，P=0.000）。且系统重建出的模型与原始影像学图像具有高

度一致性（Dice系数为 0.92），系统重建出的图像与人工重建的图像在质量方面并无明显差异。结论：基于多模态影像学数据，

运用深度学习等算法对脑肿瘤及周围结构进行自动分割及全自动三维可视化重建，具有准确、高效、可靠的优点，对于脑肿瘤

的诊断和手术计划的制定具有重要意义。
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Development and clinical application of automatic reconstruction technology 
for a three-dimensional visualization model of brain tumors

Liu　Peilong，Jiang　Li，Xie　Yanfeng，Zhan　Yan，Deng　Bo，Xu　Weijun，Shi　Quanhong
（Department of Neurosurgery，The First Affiliated Hospital of Chongqing Medical University）

【Abstract】Objective：To study and develop a three-dimensional visualization model that automatically reconstructs common brain 
tumors and important structures around them based on multimodal magnetic resonance imaging（MRI） data of the head and to validate 
its performance and clinical applicability. Methods：Multimodal MRI data of the head with common brain tumors were collected and 
divided into training set，validation set，and clinical testing set. In the training and verification sets，the system's ability to automatically 
segment and reconstruct brain tumors and surrounding structures was trained through the algorithm of 3D depth convolutional neural 
network. In the clinical testing set，the reconstruction was completed by the system and a human，respectively，and the reconstruction 
efficiency and image quality were compared between the two methods. Results：The time spent on completing the integrated model 
reconstruction of a tumor and its surrounding structure was significantly reduced from 5442±623 seconds （by a human） to （657±78） 
seconds（by the system）（t=27.530，P=0.000）. Meanwhile，the model reconstructed by the system had high consistency with the original 
image（Dice coefficient=0.92），and there was no significant difference in the image quality between the system and human reconstruc⁃
tion. Conclusion：The automatic segmentation and fully automatic 3D visualization reconstruction of brain tumors and their surround⁃
ing structures using algorithms such as deep learning based on multimodal imaging data are accurate，efficient，and reliable，which is of 
great significance in the diagnosis of brain tumors and the formulation of surgical plans.
【Key words】machine learning；multimodal MRI；brain tumor；3D visualization model

脑肿瘤是神经外科常见的疾病之一，针对大部

分颅内肿瘤，目前采用以手术为主的治疗方案。但

当肿瘤生长到一定阶段时，会影响周围重要结构，

侵犯至周围重要功能区、血管及脑白质纤维束[1]。
所以术者必须在术前对手术入路和肿瘤切除方案

进行充分评估，这对保证手术安全和手术效果至关
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重要[2]。
以核磁共振成像（magnetic resonance imaging，

MRI）和电子计算机断层扫描（computed tomography，
CT）为代表的影像学技术能够提供脑肿瘤的高分辨

率和多模态的图像[3-4]，为脑肿瘤的诊断、治疗和随

访提供客观且重要的证据[5-7]。然而，无论是MRI还
是 CT，提供的多为二维图像，难以判断颅内肿瘤与

其毗邻重要结构的三维空间关系。目前，基于多模

态 MRI 重建脑肿瘤及其周围重要结构重建的三维

可视化模型，能直观、立体地显示肿瘤与其周围重

要功能脑区、血管及脑白质纤维束等结构的关系。

同时，脑肿瘤及周围结构的解剖和病理结构的三维

可视化模型，可以帮助神经外科医生在术前进行更

加完善的术前评估，并优化手术入路和手术计划[8]。
尽管操作者可以利用多种软件来手动勾画图像和

重建三维模型，但手动进行勾画重建是繁琐和耗时

的，而且会受到操作者经验不同、长时间工作视觉

疲劳以及信息丢失的影响[9-11]，因此开发一种准确、

可靠、全自动的脑肿瘤分割算法具重要意义。近年

来，由于公共数据集的发布和人工智能的发展，脑

肿瘤的自动分割取得了巨大的进展[12]。目前已经有

关于脑肿瘤自动分割相关的研究[13-15]，但目前尚缺

乏一个更全面、更快捷的集重建肿瘤及瘤周水肿、

脑血管、纤维束、脑功能区为一体的自动重建系统。

本研究旨在开发一种新的模型，基于不同的头

颅 MRI 序列，使用不同深度卷积网络的算法，来实

现脑肿瘤及其周围重要结构图像的分割、三维可视

化模型的重建，并验证其效能及临床适用性。

1　资料与方法

1.1　一般资料

本研究符合重庆医科大学附属第一医院伦理委员会批

准的伦理标准（批准号：2022-K453)，回顾性收集本院 2016
年 1月至 2021年 6月术前考虑脑肿瘤患者的多模态MRI（包

括 T1、T1c、T2、T2flair、MRA、MRV、DTI 等序列）及人口统计

学和临床资料（包括年龄、性别、惯用手习惯、主诉、病理诊断

等）。纳入标准：①术后病理证实为脑肿瘤患者；②患者术前

接受多模态MRI检查，且图像序列完整；③患者为右利手且

临床资料完整。排除标准：①MRI质量不佳，存在运动伪影

等；②磁共振数据不完整或无法进行预处理。以构建多模态

MRI数据库。

1.2　MRI参数及资料特征

所有患者的 MRI 图像为 DICOM 格式，所有 MRI 数据均

使用西门子 1.5/3.0 T8通道头线圈扫描仪进行，术前 MRI方
案包括T1加权，重复时间/回波时间：500/10 ms，视野255 mm，

层厚 1 mm，矩阵：384×384；增强 T1WI 重复时间/回波时间 

250/2.8 ms，视野255 mm，层厚1 mm；矩阵：384×384。增强扫

描采用高压注射钆喷酸葡胺 Gd-DT-PA造影剂0.2 mmol/kg，
2.0 mL/s速率，注射后加入 15~20 mL生理盐水，之后行头部

轴位（视野 255 mm，层厚 1 mm；矩阵：384×384）、冠状位、矢

状位T1WI扫描。血管像：优选的序列是西门子MPRAGE或

多回波 MPRAGE，脑血管像扫描层厚要求≤1 mm，以重建脑

血管。弥散张量（diffusion tensor imaging，DTI）层厚 2 mm，要

求 b值 800~1 000，不少于 30个弥散梯度方向才能进行纤维

束追踪，且影像拍摄质量良好，不含明显噪声或伪影等干扰

诊断的信息。

1.3　自动重建系统的开发

1.3.1　图像预处理　病变及病变周围结构预处理包括应用

技术来减少伪影和增强图像，提高图像质量和突出感兴趣的

区域（region of interest，ROI），以实现更详细的可视化和更好

的分割精度[16]。这一步是基于图像对比度增强来突出所要

分割的病变区域。所有图像的灰度像素强度在 0~1进行了

归一化。为了确保重建出的纤维束及脑血管图像质量，对纤

维束预处理主要包括以下几个步骤，①去噪校正：包含 dwi
去噪、去Gibbs环状伪影、涡流校正 3个步骤；②刚性配准：输

入图像须与标准磁共振坐标系统（montreal neurological insti⁃
tutens space，MNI）空间具有相同的方向并且具有各向同性

间距。对脑血管图像的前处理主要分为以下几个步骤：①
数据读取：将完整的血管像序列作为模型输入，并将输入维

度从三维提高到四维。图像原始维度为（z，y，x）提高到（1，
z，y，x）；②图像裁切：将上述序列图像中等于 0 的区域进行

裁剪掉，只保留非 0的区域；③重采样：由于不同磁共振扫描

机器的设置，MRI图像 spacing不同。为了分割准确性，采用

重采样的方法，将不同的 spacing 归一化为相同的 spacing。
本算法中，spacing为[0.700，0.312，0.312]。④数据标准化：对

HU值截断后的图像进行标准化处理。

1.3.2　图像自动分割及重建的训练　将收集的多模态 MRI
数据分为训练集（876 例）和验证集（239 例）和临床测试集

（103 例），具体的算法及训练方法如下，①脑肿瘤、脑水肿、

脑血管分割模块采用 3DUNet，该网络由编码器、解码器、密

集连接和深监督组成。编码器实现图像特征的提取；解码器

实现特征的融合，并恢复出分割结果；密集连接通过跳跃连

接实现特征的复用来加强特征的学习；深监督结构能够加快

网络的收敛。模型采用Dice损失和交叉熵损失作为代价函

数进行网络的训练。②脑实质（包括脑皮层）分割网络的编

码器和解码器分别由 4个竞争密集块组成。本算法使用竞

争密集块，用maxout代替拼接操作，每个块由参数校正线性

单元、卷积和批归一化 3 个序列组成。其训练方式同脑肿

瘤。③纤维束重建整体流程。首先利用约束球形反卷积算

法得到神经纤维束方向分布数据，作为整个过程的输入数

据。随后分别送到 3个深度模型执行纤维束区域分割、起止

区域分割、束方向图映射。最后把以上步骤的结果返回到病

理空间后，执行纤维束追踪。

1.3.3　重建后处理　为了保留更大的肿瘤区域，通过填充放

大图像中的孔洞（填充）来获得二值掩模。最后，将二值掩模

应用于原始图像，获得大小，接近分割元素的真实大小，然后
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并提取纹理属性。而纤维束重建完成后需要和其他图像或

分割结果叠加显示，需要把重建结果变换到基准序列空间。

首先需要从DTI序列中提取 b0图像，使之与基准序列对齐，

得到变换矩阵，然后针对重建后的纤维束应用变换矩阵变换

即可。

1.4　系统重建性能及效率的评估

从 MRI 数据库中抽取出由 103 个真实病例构成临床测

试集，被提供给系统和两位神经外科医师。两名医师使用本

系统自带的手动勾画功能，分别分割脑肿瘤、瘤周水肿、血

管、脑皮质及纤维束，并完成重建，记录重建整体图像及重建

各部分模型所花费时间。最后通过分析系统和医师处理这

些病例所花费的时间，比较自动与手动需要花费的时间以验

证本系统的效能。

为了评估分割算法的准确性，将真实数据和自动分割数

据进行了比较：Dice系数是最常用的统计验证度量，它表示

真实值与分割结果之间的重叠比[17]，在此使用Dice系数分析

了本系统和真实图形形态的一致性，常用于以下等式表示：

Dcs=（Y，Ŷ）=2 ||Y ∩ Ŷ

||Y + || Ŷ
其中，Y和 Ŷ分别表示来自神经网络的真实值和二元预

测值。 ||Y + || Ŷ 表示计算真实值与预测之间的每个像素值的

和。

召回率：召回率（也称为敏感性）是指阳性病例中被正确

预测为阳性的概率[18]。对于特定类别，当训练图像被输入到

经过训练的 3DUNet模型中时，该模型输出图像属于这一特

定类别的概率。召回率的定义常用于以下等式表示：

              Recall= Ŷ ∩ Y
Y

1.5　统计学方法

采用 SPSS 26.0统计软件进行统计分析。计量资料采用

均数±标准差（x±s）表示，计数资料采用频数和百分比表

示，组间比较采用配对 t检验，检验水准α=0.05。

2　结 果

2.1　人口统计学和临床信息

本回顾性研究纳入的病例均来自上述构建的多模态

MRI数据库，共有来自本院的 1 292例接受头部多模态 MRI
扫描的患者被纳入本研究，其中 107例因成像质量差被人工

剔除。表1总结了用于训练、验证和测试数据集的患者年龄，

性别和脑肿瘤类型等特征，且数据集中患者均为右利手。

2.2　算法模型性能

在多模态 MRI 后处理的训练过程中，经过 10 代版本

（Epoch）迭代，对模型及算法进行了改进，最终所得的图像

中：整体图像的Dice系数及召回率分别达到了 0.92、0.98，在
关于肿瘤及周围结构的整体图像分割中（图 1），本系统（图

1A）与人工手动（图 1B）分割相比，都具有较高的一致性（整

体系统图像Dice系数 0.92 vs. 整体人工图像 0.94），且两者之

间差异无统计学意义（t=1.570，P=0.139）。在训练组中，关于

肿瘤、瘤周水肿、血管、纤维束、脑功能皮质各个结构分割的

Dice 值分别达到了 0.93、0.85、0.81、0.84、0.87。而对于重建

出 1例肿瘤及周围结构一体化模型所花费的时间上，经过多

次迭代优化算法及扩大运算内存后，平均用时由最初代版本

的 1 428 s减少到了最终版本的 657 s。图 2显示了详细的过

程，展示了Dice系数、召回率及重建模型花费时间在训练过

程中不同版本迭代的演变。

2.3　图像质量评估

本系统重建出来的图像具有较高的质量，图像整体清

洁、平滑。肿瘤、周围水肿、脑功能皮层之间，各结构轮廓好，

分化清楚，对比度好；由于人工重建追踪纤维束选取的种子

点数量有限，选取越多的种子点进行追踪，越发耗费人力，而

系统重建追踪纤维束时可选取的种子点数更多，且耗时更

少，重建的纤维束图像相对于人工重建更加饱满紧凑，在血

管重建方面，系统重建与人工重建都具有较好的连续而无中

断，人工的血管侧支重建似乎更加丰富，而系统对于血管的

重建更加清洁平滑。系统与人工的重建图像，各结构与肿瘤

之间的关系均易于诊断，并无明显差异，见图 3。在重建的

三维图像中（图 3），可清晰地判断脑肿瘤（a）与周围血管、纤

维束及脑功能皮质之间的解剖关系。

注：a，运动区分割区域；b，感觉区分割区域；c，脑动脉分割区域；d，脑静

脉分割区域；e，脑肿瘤分割区域；f，脑水肿分割区域；g，语言区分割区域

图 1　系统对各个结构的自动分割与人工对各个结构分割的对比

表 1　训练集、验证集及测试集人口学统计（x±s；n，%）

组别

训练集

验证集

测试集

n

843
239
103

年龄（岁）

53.51±20.48
52.84±20.40
49.24±16.13

男性

404（47.92）
124（51.89）

45（43.69）

脑膜瘤

416（49.35）
110（46.03）

53（51.46）

胶质瘤

309（36.66）
80（33.47）
36（34.95）

转移瘤

85（10.08）
31（12.97）
10（9.71）

淋巴瘤

33（3.91）
18（7.53）

4（3.89）

肿瘤位于优势侧

360（42.66）
99（41.45）
41（39.81）
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A. 训练过程中图像 Dice 指数及召回率变化 B. 训练过程中一体化重建用时（s）变化

图 2　脑肿瘤及周围结构一体化重建在训练过程的表现

 注：a，脑肿瘤；b，右侧皮质脊髓束；c，左侧皮质脊髓束；d，脑水肿

图 3　系统与人工所重建图像展示
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2.4　系统算法的高效性

将系统的重建性能与医生手动重建过程进行比较。2
名医生的平均后处理时间为肿瘤重建（656±181） s，水肿区

域重建（462±184） s，血管重建（2 104±328） s，纤维束重建

（1 236±438） s，脑皮质重建（748±104）s。本系统与人工相

对比，平均耗时分别减少到了肿瘤重建（134±25） s；水肿重

建（87±19） s，血管重建（92±10） s，纤维束重建（121±37） s
和脑皮质重建（74±7） s。在完成 1例肿瘤及周围结构一体

化重建的时间花费上面，系统用时将由人工用时的（5 442±

623） s减少到了（657±78） s。系统组对于脑肿瘤及各结构

的重建耗时明显少于人工组（t=27.530，P=0.000），见图 4A。

在人工完成 1例脑肿瘤一体化重建所花费的时间上，该系统

能够自动完成 6~7例脑肿瘤的一体化重建。此外，本研究还

发现系统组处理图像所需的鼠标点击次数（27±0）明显少于

人工组处理重图像所需要的鼠标点击次数（647.0±225.9），

差异有统计学意义（t=14.320，P=0.000），大大节省了在图像

重建上所需要花费的劳动力，见图4B。

2.5　重建图像的量化分析

本系统不仅可以一键重建出肿瘤及其周围重要结构的

一体化模型，还可以量化出肿瘤本身的体积以及肿瘤周围水

肿的大小，在测试集中重建的 103例脑肿瘤病例中，系统对

人工所重建出的图像及系统本身所重建的图像进行具体值

的量化，脑肿瘤及周围水肿体积大小分布情况见图 5，显示

系统与人工所重建出的肿瘤及水肿体积大小，无明显差异

（t=1.420，P=0.166）。

图 4　医生和系统分别对于 103 例病例数据重建的平均时间及鼠标点击数比较

图 5　重建图像的脑肿瘤及瘤周水肿体积大小及分布情况
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3　讨 论

本研究针对脑肿瘤开发了一种全新的三维可

视化模型自动重建系统，它融合了深度学习技术和

人工智能算法，使得三维重建过程更加准确、高效。

据了解，这是目前唯一能够同时实现脑肿瘤、功能

皮层、动脉及静脉、纤维束等结构一体化自动重建

的智能系统。

本系统利用三维卷积神经网络（3D-CNN）的模

型，相较于传统二维卷积神经网络，其充分利用不

同层间的数据信息，包含大量空间信息能够更准确

实现图像分割与重建，在既往的研究中，利用深度

学习技术如卷积神经网络[19-21]或循环神经网络[22]，

对脑肿瘤图形进行自动分割，得到的 Dice 值在

0.70~0.91 变化。而本研究中，经过 10 代迭代训练

后，得到的最终脑肿瘤分割的 Dice 值为 0.93，相对

于其他算法具有较高的准确性及还原性。

该系统操作方便快捷，可以“一键”完成脑肿瘤

及其周围结构的一体化重建。在输入 DICOM 格式

的原始数据后，仅需点击数次鼠标，就可以完整还

原肿瘤与周围结构的关系，且能够按照操作者意愿

对模型进行 360度旋转，通过不同角度观察肿瘤与

功能皮层、主要供血动脉、引流静脉，以及与白质纤

维束的关系，以制定更加完善的手术计划。在术中

最大限度地安全切除肿瘤区域，同时保留周围重要

的结构组织，具有重要意义[23]。除此之外，本系统还

可以融合患者的头部 CT 图像，可以显示 MRI 无法

清晰显示的颅骨和钙化[24-26]，这对神经外科医生在

术前设计颅骨被脑肿瘤侵犯时的颅骨瓣和骨窗的

大小非常有帮助[27]

本系统组重建出来的图像相对清洁、紧凑饱

满，各结构轮廓清，同人工肿瘤结构重建相比，都具

有较高的图像质量，且在肿瘤供血动脉、回流静脉

及周围重要结构解剖关系及破坏情况中易于判断。

但人工肿瘤分割及重建肿瘤是一项繁琐、耗时的任

务，且操作者需要具有丰富解剖经验。而在本系统

对肿瘤及周围结构一体化重建中，用时将由人工用

时的（5 442±623） s 减少到了（657±78） s，且在整

个自动重建过程中不需要人为的过多干预。因此，

本系统大大减少了技术人员必须在每张图像上花

费的时间，同时避免了由于可能存在人为误差，需

要多名医生再次确定、校验的情况，节约了大量的

人力，可以进一步增加临床医生与病人的沟通，提

供更多的人文关怀。

除此之外，本系统也能具体量化出肿瘤及瘤周

水肿的体积大小，对肿瘤大小、肿瘤周围水肿严重

程度的判断有了新的提示作用；其次对未行手术治

疗，定期随访的脑肿瘤患者，通过肿瘤、水肿的量化

比较，对于肿瘤及肿瘤周围水肿进展情况有一定的

辅助评估，以便给予临床医生一定的辅助判断。

虽然本系统在重建图像的图像质量上拥有较

好的表现，但不得不承认对于小脑幕下及颅底的脑

肿瘤重建图像质量不佳，因为小脑幕下及颅底脑肿

瘤拥有更复杂的周围结构，可能被分割算法错误地

识别为肿瘤的一部分，可能导致这些脑肿瘤重建的

差异[28]。其次，对于脑胶质瘤及转移瘤，因为常常包

含坏死，分隔，囊腔等等更多信息，使肿瘤形状更分

散和复杂，导致系统对于分割含有坏死、囊腔的肿

瘤更具有更大的挑战性[29] 。最后本研究的病例均

来自单中心且研究样本量较小，需要汇集来自不同

中心的数据进行多中心试验，以进一步证明和验证

算法结果的稳定性和准确性。

总之，本研究设计的系统能够基于脑肿瘤患者

的多模态MRI序列，自动重建出三维可视化脑肿瘤

及周围水肿、血管、纤维束、脑皮质模型。与手动重

建相比，在节约时间的同时，又节省了劳动力，且与

手动重建图像并无明显差异。另外，本系统能够立

体显示肿瘤周围重要结构与肿瘤间的关系，以及关

于肿瘤本身、肿瘤周围水肿的具体量化，对于术前

的评估和计划，具有重要意义。
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