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[ Abstract] Objective : To investigate the role of N°~methyladenosine (m°A) mediated by methyltransferase—like 3(METTL3) in oxali-
platin (OXA) resistance of colorectal cancer. Methods : Concentration gradient induction method was used to establish OXA resistant
cell line HCT116/0XA , and CCK-8 was used to detect the drug resistance of cells. Dot blot and ELISA were used to analyze the ex-
pression level of m°A in HCT116/0OXA and parental cells. RNA—seq and qRT-PCR were used to screen the differential regulators of
m°A. Western blot was used to detect the expression level of METTL3. METTL3 was overexpressed in HCT116 by adenovirus infection
technique, and the proliferation activity of each group was detected by CCK-8. The key genes and signal pathways of m°A modification
and regulation mediated by METTL3 related to drug resistance were screened through the combined analysis of MeRIP-seq and RNA-
seq data of METTL3 knocked out by HCT116 cells in GEO database and RNA-seq data of drug-resistant cells. The correlation be-
tween METTL3 and prognosis was analyzed by TCGA database. Results: The resistance of HCT116/0OXA cells to OXA was signifi-
cantly higher than that of their parents (P<0.01). Compared with HCT116 cells, the level of RNA m6A modification in HCT116/0XA
cells was significantly up—regulated (P<0.01) and the expression of METTL3 was significantly increased. Overexpression of METTL3
significantly enhanced the resistance of HCT116 cells to OXA (P<0.01). Differential genes selected from multiomics data conjoint
analysis, related to drug resistance and regulated by METTL3-mediated m6A modification had significant correlation to ABC transport-
ers, stem cell pluripotency, TGF-f signaling pathway and other signaling pathways. The high expression of METTL3 was significantly
correlated with the poor prognosis of colorectal cancer patients (P<0.01). Conclusion : METTL3 mediated m°*A methylation modifica-

tion may promote the OXA resistance of colorectal cancer by regu-
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lating ABC transporter, stem cell pluripotency and TGF-@ signaling
pathway and other classical drug resistance signaling pathways.
[Key words] colorectal cancer; oxaliplatin; chemotherapy resis-

tance ;m°A methylation ; methyltransferase—like 3
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METTL3 ATCCCCAAGGCTTCAACCAG GCGAGTGCCAGGAGATAGTC
METTL14 GAGTGTGTTTACGAAAATGGGGT CCGTCTGTGCTACGCTTCA
METTL16 CTCTGACGTGTACTCTCCTAAGG TACCAGCCATTCAAGGTTGCT
RBMI5 GGCTGCCTGAGGAGAGTGGAG CGGCTACTGCTCAATTCTGGACTG
RBMI5B TGAGGAACGGAGTAGGACCAA CTCGCTGTCTCTTGCCTTCT
VIRMA CTTGGCAAGTGGCTTGAACC ACGTAAGGCAGTGGTAAGGC
WTAP ACTGGCCTAAGAGAGTCTGAAG GTTGCTAGTCGCATTACAAGGA
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ALKBHS5 CGGCGAAGGCTACACTTACG CCACCAGCTTTTGGATCACCA
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GAPDH GCACCGTCAAGGCTGAGAAC TGGTGAAGACGCCAGTGGA
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