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(3 ZE]BR:FEKEEIES IS RNA (long non—coding RNA, LncRNA) JLEREE 11 4245 I 2 S RNA 1 (myosin light chain kinase
antisense RNAT, MYLK-AST) ¥ 5 miR-141-3p/flE N 8 1 (stathmin 1, STMN1) 3% B J 40 i 58 98 T AR 22 152
T5 ik ¥ HGC27 40 M4 9 NC 41 . si-NC 21 |\ si-MYLK-AS1 24 | si-MYLK-AS1+inhibitor NC 41 . si-MYLK-AS1+miR-141-3p
inhibitor 4 . X3 6 BHR 45 3 A 5236 A5 LncRNA MYLK-AST .miR-141-3p . STMN1 #5: %& ; qRT-PCR K&l HGC27 41 ity
LncRNA MYLK-AST miR-141-3p %35 ; CCK-8 3 K I HGC27 41 434 7 4% B0 5 98 =X 20 M AR AG 30 HG.C27 20 M 7 1= 5 i A Tran-
swell SLIG PPl T HGC27 AWML A (R ZEFERRE 1, HGEit T 208 5L B A A0 M 230 5 [R1B SR B Western blot H A T HGC27
il Jifg th STMN 1, E-cadherin , Vimentin % N—cadherin 3% JUFN 1 A5 & 194840 . 85 R : HGC27 403 P LncRNA MYLK-ASI
STMN1 7K 5 F GES-1 4118 (P<0.05) , miR—141-3p /K F-IK F GES-1 4 fifl (P<0.05) . si-MYLK-AS1 241 HGC27 40l A, . H .
T# MM LncRNA MYLK-AS1 £ 1k & STMN1 , N-cadherin , Vimentin 2 {4 7K E K F NC 41 . si-NC 41 (P<0.05) ,
HGC27 40 g I8 1% . miR-141-3p ik i | E-cadherin 8 1K 75 T NC 41 si-NC 41 (P<0.05) ; M miR—141-3p Il A5 T
ULER LncRNA MYLK-AST #l4il HGC27 41 i % JR i/ ; LncRNA MYLK-AS1# [ 895 miR—141-3p/STMN 1 4l . £5i8 : LncRNA
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Impacts of LncRNA MYLK-AS1 on proliferation,apoptosis,and invasion

of gastric cancer cells by regulating the miR—141-3p/STMN1 axis
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[ Abstract] Objective : To investigate the impacts of long non—coding RNA (LncRNA) myosin light chain kinase antisense RNA1
(MYLK-AS1) on proliferation, apoptosis, and invasion of gastric cancer cells by regulating the miR—141-3p/stathmin 1 (STMNI)
axis. Methods : HGC27 cells were grouped into negative control (NC) group, si—-NC group, si—-MYLK-AS1 group, si—-MYLK-AS1+in-
hibitor NC group, and si—-MYLK-AS1+miR-141-3p inhibitor group. The relationship among LncRNA MYLK-AS1, miR-141-3p, and
STMN1 was determined by the dual-luciferase reporter gene assay; the expression of LncRNA MYLK-AS1 and miR-141-3p in
HGC27 cells was measured by qRT-PCR ; the CCK-8 method and flow cytometry were usde to determined the proliferation and apopto-
sis of HGC27 cells, respectively ; the numbers of invading and migrating HGC27 cells were counted by Transwell ; the protein levels of
STMN1, E-cadherin, Vimentin, and N-cadherin in HGC27 cells were measured by Western blot. Results: Compared with GES-1
cells, the levels of LncRNA MYLK-AS1 and STMN1 in HGC27 cells were significantly up—regulated (P<0.05) , and the level of miR—
141-3p was significantly down-regulated (P<0.05). Compared with the NC group and si—-NC group, the si—-MYLK-AS1 group showed
significant decreases in the optical density at 450 nm, numbers of migrating and invading cells, expression level of LncRNA MYLK~-
AS1, and protein levels of STMN1, N-cadherin, and Vimentin (P<0.05) , as well as significant increases in the apoptosis rate , expres-
sion level of miR—141-3p,and protein level of E-cadherin (P<0.05). However, the low expression of miR—141-3p attenuated the inhi-
bition of HGC27 cell development by silencing LncRNA MYLK-AS1; LncRNA MYLK-AS1 regulated the miR-141-3p/STMNI1 axis
in a targeted manner. Conclusion : Silencing LncRNA MYLK-AS1

fEEMR: A 7%, Email :1j199019901j@163.com, may inhibit the expression of STMN1 by up-regulating miR-141-
BT &1 B W B IR R 5 W RAT A 3p, thus affecting the proliferation, apoptosis, and invasion of gastric
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JbdEE o ZR 2020 4F B v s 48 i 100 7 ), FE T
151 76.9 T35 . FERERE D, B AR R HER LS,
SET AR5 4 B e RN W SR, H Tk
Z AP R W, RZ2BUEFEFEIZ B Ak
TR, JRAE AT AT AE K R A A ) [R] (E S
PIAZE SR PR, 30 U0 575 28 3 $8 A 20y 1 1) 43
T, Lk E R E TR . B A B 5T UE S K B IR g Y
RNA (long non coding RNA, IncRNA ) 1] F 412 K; Fl
BRI H RN AR R A R S
K I, DUER LneRNA WLBR 8 (1 52 4% P )2 L RNAT
(myosinlightchainkinaseantisenseRNA1 ,MYLK-AS1)
AT LA A 0N BRI R A T o 20 RS A
{2789, Target Scan WU K XU ' 2R i 15 F PR 52
45 % P, LncRNA MYLK-AS1 A] DL ¥ [ i 55 miR-
141-3p/STMN1 il . | ¥ miR-1-141p 7K F 0] L]
il 5 I A0 TS T RS IR 2B, T STMN T 5 5 s i
HALFHCPTATG AS R A K ARBFFE AT LncRNA
MYLK-AST 25 ] LL3E o 98755 miR-141-3p/f A
Fa 2 M 1 (stathminl, STMN 1) 4l % 5 98 40 o 484 5
PR 8 A, TR HGE AT .

1 MEEFZE

1.1 EZ&H4

HGC27 A\ B4 ik 2 W36 i A AR (i) A IR
IS EIFRAR, GES-1 A B A0S L i A A2 vl i s A Rk
A RA RN . HeAk, 25 il FH 1Y si-NC . si-MYLK-
AS1 .inhibitor NC Fl miR—141-3p inhibitor 27 5 ¥ T ¥
TR B T . TR0 40 B 28 78 RE 77 19 CCK-8
WA, IO E R AW B 2 H AR A R AT A=, FAT e
JEER S KPR 43 B A A IR T A 3R B A A IR 2R
H V-S87 FUR 2¢O 2 /AL P 5E (annexin V-FITC/PT) A4
Pl W SR LS s e /A T P A A B
STMNI1 . E £5 %5 % 1 (E-cadherin) . N 5%l 2 4 (N—cadherin)
KPR A (vimentin) 1% FHPUA , J2& i Abcam 28 Rl 8B 14
12 F#k
12,1 ARG Byl ™ i AR 2SR T 1% 1Y
FH R AR R M 10% IG2F I35 (fetal bovine serum, FBS) (£t
IRAARRS RS R B2 573 (Dulbecco’s modified eagle medium,
DMEM) LA T TR % . X SB40AEFE 37 °C & A 5% CO, 1
AR R T R IR R 248 D b AT T 3% . #E 6 FLIG
Feb b, LA 3x10* S HGC27 4, 5T 2k , AR 7 e
A &R U, 2 9l 4% si-NCL si-MYLK-AST | si-
MYLK-AS1 5 inhibitor NC 414, LA K si-MYLK-AS1 5 miR~
141-3p inhibitor A1 A F5 Y A HGC27 4. X S8 4h B8 435l Ax
UK si-NC 2 . si-MYLK-AS1 4 .si-MYLK-AS1+inhibitor NC
ZH M si-MYLK-AS1+miR~141-3p inhibitor 2 . [R5}, 3 & —
ZH AR SZAT AT RE B HGC27 4 AR o %) BR4H , e 40 W PR h
NCH. FEYsenln , A Ak Sere 5 37 5 R 597 48 he
122 LncRNA MYLK-AS1.miR-141-3p.STMNI £ & K

THRIEMYLK-AST FI STMN1 2 [H 5 miR-141-3p AYAH AR
A, B SR MYLK-AST 9 57 A= B 28 f& (MYLK-AS1-WT)
Je g A8 BRI AR (MYLK=AST-MUT) , 343X 2 4> 5t bz 43 1)
5 mimic NC 8§ miR-141-3p mimic LR FE Y 2 HGC27 40 i
LIRS T 4 S84 miR-NC+MYLK-AS1-WT 4 |
miR-141-3p mimic+MYLK-AS1-WT 4] .miR-NC+MYLK-AS1-
MUT 24 % miR-141-3p mimic+MYLK-AS1-MUT 4.,

[ s, #47  STMIN T 356 P 19 B A5 U 5ok (STMN1-W'T) 11
28 7 R R (STMNT-MUT) , R AR X 2 8l ki 45 A 5
mimic NC 2% miR-141-3p mimic F£55 Y = HGC27 4T, A
Mk, T LLF 44 %4 - miR-NC+STMN1-WT 41 . miR-
141-3p mimic+STMN1-WT £ . miR-NC+STMN1-MUT 1 &
miR-141-3p mimic+STMN1-MUTZH, #5448 h )5, % HGC27
A YO R B TS PR AR AL A TR 43 BT
123 qRT-PCR %l LncRNA MYLK-AS1 ., miR-141-3p %
ik R Trizol I, AR U6 B A5 247 #20E , L HGC27
I GES-1 40 g A v J BOE RNA . Bk 3ok 4l J3 e 58 22 30
2.0 I REAS, AT A8 FH S 3 Sl 0 60K FL5 A6l < DNA, LAY
M LncRNA MYLK-AS1T Fl miR-141-3p ) 33k . it & 40 &
cDNA 5[] MIX (IRA T 20 pl, BT qRT-PCRALY 34 .
qRT-PCR 45 F 1R : 95 ‘CRESE 10 min, 40 MG M (95 “CHE
2:155,60 CRFZE 1 min) . KA GAPDH Fl U6 E S 2 7%
Ll 3 2749 H AR IFAR LneRNA MYLK-AS1 5 miR-141-3p
BT BRI, ST . miR-141-3p,F:5’-GCGCGTAA
CACTGTCTGG-3" ,R:5 ~AACGCTTCACGAATTTGCGT-3";
LncRNA MYLK-ASI,F:5 ~TCTCCTTGTGCAAACCTCC-3",
R:5 -CCCACATTGAGCGAATGCC-3";U6,F:5’ -GCTTCGG
CAGCACATATACTAAAAT-3,R:5’-CGCTTCACGAATTTG
CGTGTCAT-3" ; GAPDH,F:5’ ~GCTTCGGCAGCACATATAC
TAAAAT-3",R:5 -CGCTTCACGAATTTGCGTGTCAT-3,
1.2.4 Western blot ¥ il STMN1 . E—cadherin . N—cadherin .
Vimentin £ [1 32 357 fif F§ RIPA 2 fif 22 vh Wi XF %% g
HGC27 21 Ml 47 46 5 , FEARHE 4 °CTF #E4T 12 000 g 250>
15 min, K5, BCA 2 1 2 =il 0 & 1 1 I B R vk
B AR AR HRE NGE I 109% SDS-PAGE JEAT43 55, IF %%
EIZE PVDF i |, 4E3% 2 h, PVDF BEJS ] 5% i b 4= 5 5f
L h, ERFEMT . 205, K754 CRUET ST %
PRI E 137K : E-cadherin (Fi B L 1:2 000) ,vimentin (5 B [t
1:2000) ,N-cadherin (#  Fb 1:1 000) . STMN1 (% % kb
1:1000)F GAPDH(HBELL 1:1000) , ¥R H , 4k 27 iR
A R Ao A W AR IC L SR BT P E 2 he
5, W ECL R LSz 80 H A 45415 19 b4 k6 @, 1
JH Image J FA4%t (% 2670 10 K 5 (2047 8k 0T o
1.2.,5 CCK-837EK HGC27 AN sE s il 78 96 FLA L,
R AL R 4x10° D Y HGC27 4, JF7E3E 32 48 h ) L 7
37 CF I FLAIN 10 pL CCK-8 17, W71k 4 h, Ffif5 , {81 1]
i ¢ A 122 WX BfE 0 %€ (enzyme—linked immunosorbent assay,
ELISA){3&s , 52 450 nm P K T AW (absorbance , A) i
1.2.6 WA AR HGC27 AN T HGC27 ANMITE 6
FUAR  LAAEFL 4x10° 40 i 19 2 B RO F 85 95 . 24 W5 3R
WA T i AN B, IR X S A i R B T % A 45 5 L Annexin
V-FITC 1 PLIAR AV W, BOEIFE 15 min, #2385, IR
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YN 3B AR PEAS HGC27 0B A R T L )7,

1.2.7  Transwell BRI 2 HGC27 40 LT A5 Ff 287 Al
TR AR 2R, (] T Matrigel 5557143 /2 8 Transwell %
(FH TR ZBYEITAL ) Fl R £ Matrigel 56 57 % 55 A9 Transwell %
(T ERMETAL) . X EH YR HGC2T 4R HE U & , I 4%
TP R TN & 0 A DMEM 359856 o 5104 /mL
HGC27 4MIAE A £E 1%, K &5 A 20%FBS i) DMEM 35 77 LA
KA G HEFNER AN Transwell T % o B0 32 24 h 5,
JHA 28 2 [ SR Al P i L= 2% 1T ¥ 40 L, 7F Transwell % 4, i
R 22 0 40 B 49 1 2 5 PSR4 T 1812 )5, 7571 0.05%
P25 b SR AT B 3ROk E WU R Al IR IE A, OF
A BEAIL B 5 A A I DXl , AR Xof 3 2 [X il Ay 114 3
RO R AL TR

1.3 %it®s%

HIFH SPSS 25.0 % SRR EAT T Ge i~ 4b 3. fE2eid
IEZSTE R 7 2P ERAEZ IS A6 2R A T BOR LA % +
PRE2E (v £ 5) Fm o 2ULZ )0 FUEE R PO ST REAS « K 56 )y
2 ZHBUE N LR, B R R 200 i — 2D
A5 41 2 ) 22 5 fifi H SNK—q K5 30 0017 19 9 L4 . KR 3
IKHE a=0.05.

2 & R

2.1 LncRNA MYLK-AS1 #2845 miR—141-3p/STMN1 £k

fifi FH| TargetScan T T H. 43 #7 . 7% , LncRNA MYLK-
AS1 5 miR-141-3p, L M miR—-141-3p 5 STMN1 2 [6] 775
FERI A BEAE 256 00 85 . 7€ HGC27 48, miR-141-3p
mimic+MYLK-AST1-WT 241 5 7R H 1 % 50 28 i v 1 B A%
miR-NC+MYLK-ASI-WTZH ¥ HE[(0.37 £ 0.03) vs. (1.06 =
0.14)], 4 M | 2 5 (¢=14.852, P<0.001) , % —J7 i , miR—-
141-3p mimic+MYLK-AS1-MUT 41 & %% Y 2= HGC27 4 iy
B, T 0 4 2O 2B MO (1.04 £ 0.12) , 5 miR-NC+
MYLK-AS1-MUT 44 i 3% # (1.07 = 0.13) A Fb I TG 22 57 (¢=
0.656,P=0.968) .

AHAL ML , FH%2 T miR-NC+STMN1-WT 4 19 5% 56 2 [ i
£ (1.06 £0.13) , miR-141-3p mimic+STMN1-WT 21 HGC27
41 i Y 2 O 2 S M B A & (0.44 £ 0.05) (¢=12.463, P<
0.001). 4Rl , miR~141-3p mimic+STMN1-MUT £ 924 G &
5 PE(1.08 + 0.16) A% T miR-NC+STMN1-MUT £H (1.05 =
0.12) I 2 5 (¢=0.603,P=0.973) , WL 1.,

miR-141-3p 3' GGUAGAAAUGGUCUGUCACAAUS'
AL
WT-MYLK-AS 5' GAUGAAGUAAAUUGCAGUGUUC3'
MUT-MYLK-AS 5" GAUGAAGUAAAUUGUCCAGUGU3'
miR-141-3p 3' GGUAGAAAUGGUCUGUCACAAUS'
WT-STMN1 5' AGGGGAGAAACUGAAAGUGUUU3'
MUT-STMN1 5" AGGGGAGAAACUGUUAAAGUGU3'

1 TargetScan R4 il LncRNA MYLK-AS1 5 miR-141-3p.
miR-141-3p 5§ STMN1 & & =

2.2 LncRNA MYLK-AS1.miR-141-3p.STMN1 £ %8 it o 9
Fik

AT GES-1 201, HGC27 4R ifL P LncRNA MYLK-ASI
I STMNI1 By 32 18 7K ¥ ¥ A Br b (1=6.736.9.321, 34 P=
0.000) , 1fi miR—141-3p A IKTE HGC27 4 i H ) KB T
P (:=15.513,P=0.000) , WL 2.3,

STMN1 - -
—_T

GES-1 HGC27
2 Western blot#: il 48 STMN1 & HKF

2.0m
O GES-1
8 1.54 a = HGC27
¥ .
104 :
% a
-‘D_—{
-E 0-5- i ’_\|_‘
0.0 |\ T T
& R R
¥ 7 Q
‘%' \b‘\ 5‘3
Y <7 \\(
> & &
o~ S
<

\)&\
1 :a, 5 GES-1 4 L4, P<0.05
3 LncRNA MYLK-AS1.miR-141-3p.STMN1 & B & At
BIRIE (x £ 5,n=6)

2.3 LncRNAMYLK-AS1.miR-141-3p STMN1% &£ HGC27
o b o ik

A% F NC L1 si-NC 21 , si-MYLK-AS1 £ ' LncRNA
MYLK-AS1 & STMN1 )35 7K 35T # (¢=34.721.18.924,
36.168 . 19.840, ¥4 P<0.05) , miR-141-3p (f) & 1k 8 50 %
(¢=14.374,14.209, #J P<0.05) ; 5 MYLK-AS1+miR-141-3p
inhibitor 41 # HL %%, si-MYLK-AS1 41 | si-MYLK—AS1+inhibi-
tor NC 41 STMN1 7K - T % (¢=21.366.21.061, ¥ P<0.05) ,
miR-141-3p & ik & I F} (¢=13.878 . 14.374, ¥J P<0.05) ,
WLIE 4.5,

T - ——

¥

El4 Western blot# il HGC27 A STMN1 B A RiX
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T ra, 5SNCHHE, P<0.05;b, 5 si-NC 4 H i, P<0.05;5 ¢, 5 si-MYLK-AS1 4 H4¢ , P<0.05;d, 5 si-MYLK-AS 1 +inhibitor NC £H FL %2, P<0.05
E5 LncRNA MYLK-AS1.miR-141-3p.STMN1 Z B HGC27 AR EIRIE (x +5,n=6)

2.4 R LncRNA MYLK-ASI & T miR-141-3p 5 HGC27
20 J10,3 74 64 % v

5 NC 241 F1 si-NC 41 #H b , si-MYLK-AS1 4 7 HGC27
401 A s, TEUR DU 2098 20 (¢=18.152,17.859, ¥ P<0.05)
H—4 | 5 si-MYLK-AS1+miR-141-3p inhibitor 41 i 17 ¢
B, si-MYLK=AS1 21 Fl si-MYLK-AS1+inhibitor NC £H [
Ao o TE FIREF B T B (¢=15.517.,16.102, ¥ P<0.05) , WL,
6,
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¥ ra, 5 NCH LA, P<0.05;b, 5 si-NC 41 L #% , P<0.05; ¢, 5 si-
MYLK-AS1 41 H. %2 , P<0.05; d, 5 si-MYLK—-AS1+inhibitor NC 41 I

&5, P<0.05
E6 T2t LncRNA MYLK-AS1 = Fifl miR-141-3p
t HGC27 RIS S AT 2406 (x + 5,n=6)
2.5 % LncRNA MYLK-ASI 2 F A miR-141-3p 5F HGC27

20 feL A T 69 R

AT si—-MYLK-AST 40 B4 410, A 4b B NC 4 K
si-NC AL P ) HGC27 MM 41 e B T S AR A 4N A 98 7= 3R (¢=
42.675.42.836, 1] P<0.05) ; 5 si-MYLK-AS1+miR-141-3p
inhibitor 41 A L%, si-MYLK-AS1 41 | si-MYLK~AS1+inhibi-

tor NC 20 HGC27 41 Jiil ¥4 7= 2 I Ft (¢4=33.004.33.907, 34 P<
0.05), WL 7.8,
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2.6 ¥LE LncRNA MYLK-AS1 & F i miR-141-3p 5 HGC27
wm fe A% & i A & b A T 4% 4L (epithelial-mesenchymal
transition, EMT) A8 % & & # % v

TENC M si-NC A A HF si-MYLK-AS1 4, HGC27
2 1 B 3T B A2 28 6 1 X N—cadherin 1 Vimentin 25 F B 7K
S i BN (¢=14.726 ., 10.898, 25.852, 17.000 F 14.033 .
11.587.24.961.17.667, ¥ P<0.05) , ilii E-cadherin % [ 7K -
2304 T B (¢=23.668 .24.083, ¥ P<0.05) . B—J7ii, 5
si-MYLK-AS1+miR—141-3p inhibitor 41 It , si-MYLK-AS1
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21 Fll si—-MYLK—AS1+inhibitor NC £ 75 HGC27 40 it 1T 5% Fl {7
ZEHE 1} N—cadherin F1 Vimentin % 17K - | B 8 T K (g=
6.207,4.061,14.263,14.667 F17.656,3.546,15.601,16.000, P<
0.05) , Tl E-cadherin 2 [ 7K 70 2 3 | T # (¢=17.024
17.440, 34 P<0.05) , WLIE 9~13.
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MYLK-AS1 2 e 45 , P<0.055 d, 5 si-MYLK—AS1+inhibitor NC 41 It
#,P<0.05
E8 T2k LncRNA MYLK-AS1 5 TiE miR-141-3p %t HGC27
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I 55
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1 ra, 5 NC 4 LA, P<0.05;b, 5 si-NC 4H I8, P<0.05; ¢, 55 si-
MYLK-AS1 2H 4% , P<0.05;d, 5 si-MYLK-AS1+inhibitor NC 41 [,
%, P<0.05
11 Bk LncRNA MYLK-AS1 5 Fifl miR-141-3p Xt HGC27
MRS NI M E R (x £ 5,n=6)

ecaben —— - —

12 Western blot #& il £l i1 1 E—cadherin N-cadherin,
Vimentin E G &%
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