Objective:Tocomparetheresultsofthebackpropagation(BP)neuralnetworkmodel,BPneuralnetworkmodeltrainedwithgeneticalgorithm(GA-BP),andCoxproportionalhazardsmodelinthepredictionofamputationandsurvivalprognosisofdiabeticfoot(DF)patients,andtochoosetheoptimalpredictionmodel.Methods:Hospitalizationdataof273patientswithDFwerecollectedwhowereadmittedtoTheFirstAffiliatedHospitalofChongqingMedicalUniversityfromJanuary2014toJanuary2016.ThesepatientswerealsofollowedupbytelephoneuntilDecember2016.Thenthreemodelswereestablished,namelytheBPneuralnetworkmodel,BPneuralnetworkmodeltrainedwithgeneticalgorithm,andCoxproportionalhazardsmodel.Theareaunderthereceiveroperatingcharacteristiccurve,sensitivity,andspecificitywereusedtojudgetheperformanceofthethreemodelsinthepredictionofamputationandsurvivalprognosisofDFpatients.Results:Whentheoutcomeswereamputationanddeath,theBPneuralnetworkmodel(amputa-tion:χ2=7.692,P=0.005;death:χ2=12.071,P=0.000)andBPneuralnetworkmodeltrainedwithgeneticalgorithm(amputation:χ2=10.083,P=0.001;death:χ2=12.071,P=0.000)werebetterthantheCoxproportionalhazardsmodel.However,therewasnosignificantdifferencebetweentheBPneuralnetworkmodelandtheBPneuralnetworkmodeltrainedwithgeneticalgorithm(amputation:χ2=0.200,P=1.000;death:χ2=0.000,P=1.000).Conclusion:BoththeBPneuralnetworkmodelandtheBPneuralnetworkmodeltrainedwithgeneticalgorithmcanbeappliedtotheanalysisofsurvivalandprognosisofchronicdiseasessuchasDF.
ChenJing, ChengQingfeng, ChenYue, YiJing. Astudyofprognosticpredictionmodelfordiabeticfootpatients[J]. Journal of Chongqing Medical University,2020,45(3):394-